-
- Jonathan Elmer, Zihuai He, Teresa May, Elizabeth Osborn, Richard Moberg, Stephanie Kemp, Jesse Stover, Ethan Moyer, Romergryko G Geocadin, Karen G Hirsch, and PRECICECAP Study Team.
- Departments of Emergency Medicine, Critical Care Medicine and Neurology, University of Pittsburgh, Iroquois Building, Suite 400A, 3600 Forbes Avenue, Pittsburgh, PA, 15213, USA. elmerjp@upmc.edu.
- Neurocrit Care. 2022 Aug 1; 37 (Suppl 2): 237247237-247.
BackgroundMost trials in critical care have been neutral, in part because between-patient heterogeneity means not all patients respond identically to the same treatment. The Precision Care in Cardiac Arrest: Influence of Cooling duration on Efficacy in Cardiac Arrest Patients (PRECICECAP) study will apply machine learning to high-resolution, multimodality data collected from patients resuscitated from out-of-hospital cardiac arrest. We aim to discover novel biomarker signatures to predict the optimal duration of therapeutic hypothermia and 90-day functional outcomes. In parallel, we are developing a freely available software platform for standardized curation of intensive care unit-acquired data for machine learning applications.MethodsThe Influence of Cooling duration on Efficacy in Cardiac Arrest Patients (ICECAP) study is a response-adaptive, dose-finding trial testing different durations of therapeutic hypothermia. Twelve ICECAP sites will collect data for PRECICECAP from multiple modalities routinely used after out-of-hospital cardiac arrest, including ICECAP case report forms, detailed medication data, cardiopulmonary and electroencephalographic waveforms, and digital imaging and communications in medicine files (DICOMs). We partnered with Moberg Analytics to develop a freely available software platform to allow high-resolution critical care data to be used efficiently and effectively. We will use an autoencoder neural network to create low-dimensional representations of all raw waveforms and derivative features, censored at rewarming to ensure clinical usability to guide optimal duration of hypothermia. We will also consider simple features that are historically considered to be important. Finally, we will create a supervised deep learning neural network algorithm to directly predict 90-day functional outcome from large sets of novel features.ResultsPRECICECAP is currently enrolling and will be completed in late 2025.ConclusionsCardiac arrest is a heterogeneous disease that causes substantial morbidity and mortality. PRECICECAP will advance the overarching goal of titrating personalized neurocritical care on the basis of robust measures of individual need and treatment responsiveness. The software platform we develop will be broadly applicable to hospital-based research after acute illness or injury.© 2022. Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.