• Mol Pain · Oct 2015

    Novel cytogenic and neurovascular niches due to blood-brain barrier compromise in the chronic pain brain.

    • Maral Tajerian and J David Clark.
    • Veterans Affairs Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA, 94304, USA. maral@stanford.edu.
    • Mol Pain. 2015 Jan 1;11:63.

    BackgroundThe mechanisms by which painful injuries are linked to the multitude of pain-related comorbidities and neuroplastic changes in the brain remain poorly understood. Here we propose a model that relies on epi-neuronal communication through the vascular system to effect various brain structures. Specifically, we hypothesize that the differential vulnerability of the blood-brain barrier (BBB) in different brain regions is associated with region-specific neuroplastic and neurovascular changes that are in turn associated with particular pain-related comorbidities.Presentation Of The HypothesisWe will present our hypothesis by focusing on two main points: (A) chronic pain (CP) is associated with differential BBB compromise. (B) Circulating mediators leaking through the BBB create cytogenic and neovascular niches associated with pain-related co-morbidities.Testing The HypothesisPre-clinically, our hypothesis can be tested by observing, in parallel, BBB compromise, (neo)vascularization, neurogenesis, and their co-localization in animal pain models using imaging, microscopy, biochemical and other tools. Furthermore, the BBB can be experimentally damaged in specific brain regions, and the consequences of those lesions studied on nociception and associated comorbidities. Recently developed imaging techniques allow the analysis of blood brain barrier integrity in patients providing a route for translation of the laboratory findings. Though perhaps more limited, post-mortem examination of brains with available pain histories constitutes a second approach to addressing this hypothesis.Implications Of The HypothesisUnderstanding changes in BBB permeability in chronic pain conditions has clear implications both for understanding the pathogenesis of chronic pain and for the design of novel treatments to prevent chronic pain and its consequences. More broadly, this hypothesis may help us to understand how peripheral injuries impact the brain via mechanisms other than commonly studied efferent sensory pathways.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…