-
J Clin Monit Comput · Dec 2016
Sensor fusion methods for reducing false alarms in heart rate monitoring.
- Gabriel Borges and Valner Brusamarello.
- Electrical Engineering Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-190, Brazil. gabriel.borges@ufrgs.br.
- J Clin Monit Comput. 2016 Dec 1; 30 (6): 859-867.
AbstractAutomatic patient monitoring is an essential resource in hospitals for good health care management. While alarms caused by abnormal physiological conditions are important for the delivery of fast treatment, they can be also a source of unnecessary noise because of false alarms caused by electromagnetic interference or motion artifacts. One significant source of false alarms is related to heart rate, which is triggered when the heart rhythm of the patient is too fast or too slow. In this work, the fusion of different physiological sensors is explored in order to create a robust heart rate estimation. A set of algorithms using heart rate variability index, Bayesian inference, neural networks, fuzzy logic and majority voting is proposed to fuse the information from the electrocardiogram, arterial blood pressure and photoplethysmogram. Three kinds of information are extracted from each source, namely, heart rate variability, the heart rate difference between sensors and the spectral analysis of low and high noise of each sensor. This information is used as input to the algorithms. Twenty recordings selected from the MIMIC database were used to validate the system. The results showed that neural networks fusion had the best false alarm reduction of 92.5 %, while the Bayesian technique had a reduction of 84.3 %, fuzzy logic 80.6 %, majority voter 72.5 % and the heart rate variability index 67.5 %. Therefore, the proposed algorithms showed good performance and could be useful in bedside monitors.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.