-
- Syed M Adil, Cyrus Elahi, Dev N Patel, Andreas Seas, Pranav I Warman, Anthony T Fuller, Michael M Haglund, and Timothy W Dunn.
- Division of Global Neurosurgery and Neurology, Duke University Medical Center, Durham, North Carolina, USA; Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA.
- World Neurosurg. 2022 Aug 1; 164: e8e16e8-e16.
ObjectiveTraumatic brain injury (TBI) disproportionately affects low- and middle-income countries (LMICs). In these settings, accurate patient prognostication is both difficult and essential for high-quality patient care. With the ultimate goal of enhancing TBI triage in LMICs, we aim to develop the first deep learning model to predict outcomes after TBI and compare its performance with that of less complex algorithms.MethodsTBI patients' data were prospectively collected in Kampala, Uganda, from 2016 to 2020. To predict good versus poor outcome at hospital discharge, we created deep neural network, shallow neural network, and elastic-net regularized logistic regression models. Predictors included 13 easily acquirable clinical variables. We assessed model performance with 5-fold cross-validation to calculate areas under both the receiver operating characteristic curve and precision-recall curve (AUPRC), in addition to standardized partial AUPRC to focus on comparisons at clinically relevant operating points.ResultsWe included 2164 patients for model training, of which 12% had poor outcomes. The deep neural network performed best as measured by the area under the receiver operating characteristic curve (0.941) and standardized partial AUPRC in region maximizing recall (0.291), whereas the shallow neural network was best by the area under the precision-recall curve (0.770). In several other comparisons, the elastic-net regularized logistic regression was noninferior to the neural networks.ConclusionsWe present the first use of deep learning for TBI prognostication, with an emphasis on LMICs, where there is great need for decision support to allocate limited resources. Optimal algorithm selection depends on the specific clinical setting; deep learning is not a panacea, though it may have a role in these efforts.Copyright © 2022 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.