• J. Intern. Med. · Jul 2022

    Review

    Low-Dose CT lung cancer screening; clinical evidence and implementation research.

    • Harriet L Lancaster, Marjolein A Heuvelmans, and Matthijs Oudkerk.
    • Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
    • J. Intern. Med. 2022 Jul 1; 292 (1): 68-80.

    AbstractLung cancer causes more deaths than breast, cervical, and colorectal cancer combined. Nevertheless, population-based lung cancer screening is still not considered standard practice in most countries worldwide. Early lung cancer detection leads to better survival outcomes: patients diagnosed with stage 1A lung cancer have a >75% 5-year survival rate, compared to <5% at stage 4. Low-dose computed tomography (LDCT) thorax imaging for the secondary prevention of lung cancer has been studied at length, and has been shown to significantly reduce lung cancer mortality in high-risk populations. The US National Lung Screening Trial reported a 20% overall reduction in lung cancer mortality when comparing LDCT to chest X-ray, and the Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) trial more recently reported a 24% reduction when comparing LDCT to no screening. Hence, the focus has now shifted to implementation research. Consequently, the 4-IN-THE-LUNG-RUN consortium based in five European countries, has set up a large-scale multicenter implementation trial. Successful implementation of and accessibility to LDCT lung cancer screening are dependent on many factors, not limited to population selection, recruitment strategy, computed tomography screening frequency, lung-nodule management, participant compliance, and cost effectiveness. This review provides an overview of current evidence for LDCT lung cancer screening, and draws attention to major factors that need to be addressed to successfully implement standardized, effective, and accessible screening throughout Europe. Evidence shows that through the appropriate use of risk-prediction models and a more personalized approach to screening, efficacy could be improved. Furthermore, extending the screening interval for low-risk individuals to reduce costs and associated harms is a possibility, and through the use of volumetric-based measurement and follow-up, false positive results can be greatly reduced. Finally, smoking cessation programs could be a valuable addition to screening programs and artificial intelligence could offer a solution to the added workload pressures radiologists are facing.© 2022 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.