• Spine · Aug 2022

    Multicenter Study

    Biomechanical Effects of Thoracolumbosacral Orthosis Design Features on 3D Correction in Adolescent Idiopathic Scoliosis: A Comprehensive Multicenter Study.

    • Aymeric Guy, Maxence Coulombe, Hubert Labelle, Manuel Rigo, Man-Sang Wong, Babak Hassan Beygi, James Wynne, Michael Timothy Hresko, Eric Ebermeyer, Philippe Vedreine, Xue-Cheng Liu, John G Thometz, Benoît Bissonnette, Charlotte Sapaly, Soraya Barchi, and Carl-Éric Aubin.
    • Polytechnique Montreal, Montreal, Quebec, Canada.
    • Spine. 2022 Aug 1; 47 (15): 110311101103-1110.

    Study DesignMulticenter numerical study.ObjectiveTo biomechanically analyze and compare various passive correction features of braces, designed by several centers with diverse practices, for three-dimensional (3D) correction of adolescent idiopathic scoliosis.Summary Of Background DataA wide variety of brace designs exist, but their biomechanical effectiveness is not clearly understood. Many studies have reported brace treatment correction potential with various degrees of control, making the objective comparison of correction mechanisms difficult. A Finite Element Model simulating the immediate in-brace corrective effects has been developed and allows to comprehensively assess the biomechanics of different brace designs.MethodsExpert clinical teams (one orthotist and one orthopedist) from six centers in five countries participated in the study. For six scoliosis cases with different curve types respecting SRS criteria, the teams designed two braces according to their treatment protocol. Finite Element Model simulations were performed to compute immediate in-brace 3D correction and skin-to-brace pressures. All braces were randomized and labeled according to 21 design features derived from Society on Scoliosis Orthopaedic and Rehabilitation Treatment proposed descriptors, including positioning of pressure points, orientation of push vectors, and sagittal design. Simulated in brace 3D corrections were compared for each design feature class using ANOVAs and linear regressions (significance P ≤ 0.05).ResultsSeventy-two braces were tested, with significant variety in the design approaches. Pressure points at the apical vertebra level corrected the main thoracic curve better than more caudal locations. Braces with ventral support flattened the lumbar lordosis. Lateral and ventral skin-to-brace pressures were correlated with changes in thoracolumbar/lumbar Cobb and lumbar lordosis (r =- 0.53, r = - 0.54). Upper straps positioned above T10 corrected the main thoracic Cobb better than those placed lower.ConclusionsThe corrective features of various scoliosis braces were objectively compared in a systematic approach with minimal biases and variability in test parameters, providing a better biomechanical understanding of individual passive mechanisms' contribution to 3D correction.Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.