• Int J Med Sci · Jan 2008

    An innovative method to evaluate the suture compliance in sealing the surgical wound lips.

    • Farid Saleh, Beniamino Palmieri, Danielle Lodi, and Khalid Al-Sebeih.
    • Department of Anatomy, Faculty of Medicine, Health Science Centre, Kuwait University, Kuwait. fred@hsc.edu.kw
    • Int J Med Sci. 2008 Jan 1; 5 (6): 354-60.

    Background And AimThe increasing number of surgical procedures performed with local anesthesia, followed by immediate patient discharge from the hospital, emphasizes the need for a tight waterproof suture that is capable of maintaining its tensile strength in the postoperative phase when the wound tumescence, edema due to the anesthetic drug, and surgical trauma disappear. Moreover, the issue of having an accurate surgical wound closure is very relevant in vivo in order to prevent hemorrhage and exogenous microbial infections. This study aimed at designing a new a lab technique that could be used for evaluating the best surgical material. Using such a technique, we compared the wound-lip-sealing properties of three commonly-used suture threads, namely polyurethane, polypropylene, and polyamide.Materials And MethodsThe mechanical properties of same-size suture threads made from polyurethane, polypropylene, and polyamide, were compared in order to define the one that possess the best elastic properties by being able to counteract the tension-relaxation process in the first 12 hours following surgery. The tension holding capacity of the suture materials was measured in both in vivo and in vitro experiments. The surface area of the scar associated with the three different suture threads was measured and compared, and the permeability of the three different suture threads was assessed at 0 minute, 2 minute, 4 minute, 6 minute, and 8 minute- interval.ResultsResults showed that polyurethane suture threads had significantly (P < 0.05) better tensile strength, elongation endurance before breakage, and better elasticity coefficient as compared to polypropylene and polyamide suture threads. Moreover, polyurethane suture threads were significantly (P < 0.05) more impermeable as compared to the other two suture thread types (polypropylene and polyamide). This impermeability was also associated with a tighter wound-lip-sealing ability, and with significantly (P < 0.05) less scar formation.ConclusionAmong the main concerns that surgeons, physicians, and patients often have is the development infection, oozing, and scar at the incision site following suturing. This always raises the question about which suture to use to avoid the above problems. This study provides evidence that the new technique developed in our lab could be used to compare the wound-lip sealing properties of different surgical suture threads. Using such a technique, the results show that polyurethane is significantly better than other commonly-used suture threads, like polypropylene and polyamide, in relation to wound sealing and scar formation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.