• J Eval Clin Pract · Aug 2017

    Using classification tree analysis to generate propensity score weights.

    • Ariel Linden and Paul R Yarnold.
    • Linden Consulting Group, LLC, Ann Arbor, MI, USA.
    • J Eval Clin Pract. 2017 Aug 1; 23 (4): 703-712.

    Rationale, Aims And ObjectivesIn evaluating non-randomized interventions, propensity scores (PS) estimate the probability of assignment to the treatment group given observed characteristics. Machine learning algorithms have been proposed as an alternative to conventional logistic regression for modelling PS in order to avoid limitations of linear methods. We introduce classification tree analysis (CTA) to generate PS which is a "decision-tree"-like classification model that provides accurate, parsimonious decision rules that are easy to display and interpret, reports P values derived via permutation tests, and evaluates cross-generalizability.MethodUsing empirical data, we identify all statistically valid CTA PS models and then use them to compute strata-specific, observation-level PS weights that are subsequently applied in outcomes analyses. We compare findings obtained using this framework to logistic regression and boosted regression, by evaluating covariate balance using standardized differences, model predictive accuracy, and treatment effect estimates obtained using median regression and a weighted CTA outcomes model.ResultsWhile all models had some imbalanced covariates, main-effects logistic regression yielded the lowest average standardized difference, whereas CTA yielded the greatest predictive accuracy. Nevertheless, treatment effect estimates were generally consistent across all models.ConclusionsAssessing standardized differences in means as a test of covariate balance is inappropriate for machine learning algorithms that segment the sample into two or more strata. Because the CTA algorithm identifies all statistically valid PS models for a sample, it is most likely to identify a correctly specified PS model, and should be considered as an alternative approach to modeling the PS.© 2017 John Wiley & Sons, Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…