-
J. Neurol. Neurosurg. Psychiatr. · Jun 2022
Temporal lobe epilepsy lateralisation and surgical outcome prediction using diffusion imaging.
- Graham W Johnson, Leon Y Cai, Saramati Narasimhan, Hernán F J González, Kristin E Wills, Victoria L Morgan, and Dario J Englot.
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA grahamwjohnson@gmail.com.
- J. Neurol. Neurosurg. Psychiatr. 2022 Jun 1; 93 (6): 599608599-608.
ObjectiveWe sought to augment the presurgical workup of medically refractory temporal lobe epilepsy by creating a supervised machine learning technique that uses diffusion-weighted imaging to classify patient-specific seizure onset laterality and surgical outcome.Methods151 subjects were included in this analysis: 62 patients (aged 18-68 years, 36 women) and 89 healthy controls (aged 18-71 years, 47 women). We created a supervised machine learning technique that uses diffusion-weighted metrics to classify subject groups. Specifically, we sought to classify patients versus healthy controls, unilateral versus bilateral temporal lobe epilepsy, left versus right temporal lobe epilepsy and seizure-free versus not seizure-free surgical outcome. We then reduced the dimensionality of derived features with community detection for ease of interpretation.ResultsWe classified the subject groups in withheld testing data sets with a cross-fold average testing areas under the receiver operating characteristic curve of 0.745 for patients versus healthy controls, 1.000 for unilateral versus bilateral seizure onset, 0.662 for left versus right seizure onset, 0.800 for left-sided seizure-free vsersu not seizure-free surgical outcome and 0.775 for right-sided seizure-free versus not seizure-free surgical outcome.ConclusionsThis technique classifies important clinical decisions in the presurgical workup of temporal lobe epilepsy by generating discerning white-matter features. We believe that this work augments existing network connectivity findings in the field by further elucidating important white-matter pathology in temporal lobe epilepsy. We hope that this work contributes to recent efforts aimed at using diffusion imaging as an augmentation to the presurgical workup of this devastating neurological disorder.© Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.