• Neurosurgery · Jul 2022

    Artificial Intelligence for Survival Prediction in Brain Tumors on Neuroimaging.

    • Anne Jian, Sidong Liu, and Antonio Di Ieva.
    • Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
    • Neurosurgery. 2022 Jul 1; 91 (1): 8268-26.

    AbstractSurvival prediction of patients affected by brain tumors provides essential information to guide surgical planning, adjuvant treatment selection, and patient counseling. Current reliance on clinical factors, such as Karnofsky Performance Status Scale, and simplistic radiological characteristics are, however, inadequate for survival prediction in tumors such as glioma that demonstrate molecular and clinical heterogeneity with variable survival outcomes. Advances in the domain of artificial intelligence have afforded powerful tools to capture a large number of hidden high-dimensional imaging features that reflect abundant information about tumor structure and physiology. Here, we provide an overview of current literature that apply computational analysis tools such as radiomics and machine learning methods to the pipeline of image preprocessing, tumor segmentation, feature extraction, and construction of classifiers to establish survival prediction models based on neuroimaging. We also discuss challenges relating to the development and evaluation of such models and explore ethical issues surrounding the future use of machine learning predictions.Copyright © Congress of Neurological Surgeons 2022. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.