• Critical care medicine · Jul 2022

    Multicenter Study

    The Global Open Source Severity of Illness Score (GOSSIS).

    • Jesse D Raffa, JohnsonAlistair E WAEWInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA., Zach O'Brien, Tom J Pollard, Roger G Mark, Leo A Celi, David Pilcher, and Omar Badawi.
    • Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA.
    • Crit. Care Med. 2022 Jul 1; 50 (7): 104010501040-1050.

    ObjectivesTo develop and demonstrate the feasibility of a Global Open Source Severity of Illness Score (GOSSIS)-1 for critical care patients, which generalizes across healthcare systems and countries.DesignA merger of several critical care multicenter cohorts derived from registry and electronic health record data. Data were split into training (70%) and test (30%) sets, using each set exclusively for development and evaluation, respectively. Missing data were imputed when not available.Setting/PatientsTwo large multicenter datasets from Australia and New Zealand (Australian and New Zealand Intensive Care Society Adult Patient Database [ANZICS-APD]) and the United States (eICU Collaborative Research Database [eICU-CRD]) representing 249,229 and 131,051 patients, respectively. ANZICS-APD and eICU-CRD contributed data from 162 and 204 hospitals, respectively. The cohort included all ICU admissions discharged in 2014-2015, excluding patients less than 16 years old, admissions less than 6 hours, and those with a previous ICU stay.InterventionsNot applicable.Measurements And Main ResultsGOSSIS-1 uses data collected during the ICU stay's first 24 hours, including extrema values for vital signs and laboratory results, admission diagnosis, the Glasgow Coma Scale, chronic comorbidities, and admission/demographic variables. The datasets showed significant variation in admission-related variables, case-mix, and average physiologic state. Despite this heterogeneity, test set discrimination of GOSSIS-1 was high (area under the receiver operator characteristic curve [AUROC], 0.918; 95% CI, 0.915-0.921) and calibration was excellent (standardized mortality ratio [SMR], 0.986; 95% CI, 0.966-1.005; Brier score, 0.050). Performance was held within ANZICS-APD (AUROC, 0.925; SMR, 0.982; Brier score, 0.047) and eICU-CRD (AUROC, 0.904; SMR, 0.992; Brier score, 0.055). Compared with GOSSIS-1, Acute Physiology and Chronic Health Evaluation (APACHE)-IIIj (ANZICS-APD) and APACHE-IVa (eICU-CRD), had worse discrimination with AUROCs of 0.904 and 0.869, and poorer calibration with SMRs of 0.594 and 0.770, and Brier scores of 0.059 and 0.063, respectively.ConclusionsGOSSIS-1 is a modern, free, open-source inhospital mortality prediction algorithm for critical care patients, achieving excellent discrimination and calibration across three countries.Copyright © 2022 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…