-
- Guy Fogel, Nicholas Martin, Gregory M Williams, Jesse Unger, Christian Yee-Yanagishita, Matthew Pelletier, William Walsh, Yun Peng, and Michael Jekir.
- Spine Pain Begone Clinic, San Antonio, Texas, USA.
- World Neurosurg. 2022 Jun 1; 162: e626e634e626-e634.
ObjectiveThe objective of the study was to quantify the effect of cage material (titanium-alloy vs. polyetheretherketone or PEEK) and design (porous vs. solid) on subsidence and osseointegration.MethodsThree lateral cages (solid PEEK, solid titanium, and 3-dimension-printed porous titanium cages) were evaluated for cage stiffness, subsidence compression stiffness, and dynamic subsidence displacement under simulated postoperative spine loading. Dowel-shaped implants made of grit-blasted solid titanium alloy (solid titanium) and porous titanium were fabricated using commercially available processes. Samples were processed for mechanical push-out testing and polymethylmethacrylate histology following an established ovine bone implantation model.ResultsThe solid titanium cage exhibited the greatest stiffness (57.1 ± 0.6 kN/mm), followed by the porous titanium cage (40.4 ± 0.3 kN/mm) and the solid PEEK cage (37.1 ± 1.2 kN/mm). In the clinically relevant dynamic subsidence, the porous titanium cage showed the least amount of subsidence displacement (0.195 ± 0.012 mm), significantly less than that of the solid PEEK cage (0.328 ± 0.020 mm) and the solid titanium cage (0.538 ± 0.027 mm). Bony on-growth was noted histologically on all implant materials; however, only the porous titanium supported bony ingrowth with marked quantities of bone formed within the interconnected pores through 12 weeks. Functional differences in osseointegration were noted between groups during push-out testing. The porous titanium showed the highest maximum shear stress at 12 weeks and was the only group that demonstrated significant improvement (4-12 weeks).ConclusionsThe choice of material and design is critical to cage mechanical and biological performances. A porous titanium cage can reduce subsidence risk and generate biological stability through bone on-growth and ingrowth.Copyright © 2022 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.