• Am. J. Med. · Jul 2016

    A Tool to Assess Risk of De Novo Opioid Abuse or Dependence.

    • Thomas Ciesielski, Reethi Iyengar, Amit Bothra, Dave Tomala, Geoffrey Cislo, and Brian F Gage.
    • Division of Medical Education, Department of Internal Medicine, Washington University School of Medicine, St Louis, Mo. Electronic address: t.ciesielski@wustl.edu.
    • Am. J. Med. 2016 Jul 1; 129 (7): 699-705.e4.

    BackgroundDetermining risk factors for opioid abuse or dependence will help clinicians practice informed prescribing and may help mitigate opioid abuse or dependence. The purpose of this study is to identify variables predicting opioid abuse or dependence.MethodsA retrospective cohort study using de-identified integrated pharmacy and medical claims was performed between October 2009 and September 2013. Patients with at least 1 opioid prescription claim during the index period (index claim) were identified. We ascertained risk factors using data from 12 months before the index claim (pre-period) and captured abuse or dependency diagnosis using data from 12 months after the index claim (postperiod). We included continuously eligible (pre- and postperiod) commercially insured patients aged 18 years or older. We excluded patients with cancer, residence in a long-term care facility, or a previous diagnosis of opioid abuse or dependence (identified by International Classification of Diseases 9th revision code or buprenorphine/naloxone claim in the pre-period). The outcome was a diagnosis of opioid abuse (International Classification of Diseases 9th revision code 304.0x) or dependence (305.5).ResultsThe final sample consisted of 694,851 patients. Opioid abuse or dependence was observed in 2067 patients (0.3%). Several factors predicted opioid abuse or dependence: younger age (per decade [older] odds ratio [OR], 0.68); being a chronic opioid user (OR, 4.39); history of mental illness (OR, 3.45); nonopioid substance abuse (OR, 2.82); alcohol abuse (OR, 2.37); high morphine equivalent dose per day user (OR, 1.98); tobacco use (OR, 1.80); obtaining opioids from multiple prescribers (OR, 1.71); residing in the South (OR, 1.65), West (OR, 1.49), or Midwest (OR, 1.24); using multiple pharmacies (OR, 1.59); male gender (OR, 1.43); and increased 30-day adjusted opioid prescriptions (OR, 1.05).ConclusionsReadily available demographic, clinical, behavioral, pharmacy, and geographic information can be used to predict the likelihood of opioid abuse or dependence.Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.