• Critical care medicine · Dec 2000

    Effects of dopamine on posttraumatic cerebral blood flow, brain edema, and cerebrospinal fluid glutamate and hypoxanthine concentrations.

    • S N Kroppenstedt, J F Stover, and A W Unterberg.
    • Department of Neurosurgery, Charité, Virchow Medical Center, Humboldt-University Berlin, Germany.
    • Crit. Care Med. 2000 Dec 1;28(12):3792-8.

    ObjectivesDopamine is often used in the treatment of traumatic brain injury to maintain cerebral perfusion pressure. However, it remains unclear whether dopamine contributes to secondary brain injury caused by vasoconstriction and resulting diminished cerebral perfusion. The present study investigated the effects of dopamine in different concentrations on posttraumatic cortical cerebral blood flow (CBF), brain edema formation, and cerebrospinal fluid concentrations of glutamate and hypoxanthine.DesignRandomized, placebo-controlled trial.SettingAnimal laboratory.SubjectsEighteen male Sprague-Dawley rats subjected to a focal cortical brain injury.InterventionsFour hours after controlled cortical impact, rats were randomized to receive physiologic saline solution (n = 6), 10-12 tig/kg/min dopamine (n = 6), or 40-50 microg/kg/min dopamine (n = 6), for 3 hrs. Cortical CBF was measured over both hemispheres by using laser-Doppler flowmetry before trauma and before, during, and after the infusion period. At 8 hrs after trauma, brains were removed to determine hemispheric swelling and water content. Cisternal cerebrospinal fluid was sampled to measure glutamate and hypoxanthine.Measurements And Main ResultsAfter trauma, cortical CBF was significantly decreased by 46% within the vicinity of the cortical contusion in all rats. Infusion of saline and 10-12 ig/kg/min dopamine did not change mean arterial blood pressure (MABP) or cortical CBF. However, infusion of 40-50 microg/kg/min dopamine, which elevated MABP from 89 to 120 mm Hg, significantly increased posttraumatic CBF within and around the contusion by 35%. Over the nontraumatized hemisphere, CBF remained unchanged. Hemispheric swelling, water content, cerebrospinal fluid glutamate, and hypoxanthine levels were not affected by dopamine in the given dosages.ConclusionsUnder the present study design, there was no evidence for a dopamine-mediated vasoconstriction, because posttraumatic cortical CBF was increased by dopamine-induced elevation of MABP. However, the increase in CBF did not significantly affect edema formation or cerebrospinal fluid glutamate and hypoxanthine levels.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.