• Pain Med · Nov 2005

    Electric and thermal field effects in tissue around radiofrequency electrodes.

    • Eric R Cosman.
    • Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
    • Pain Med. 2005 Nov 1; 6 (6): 405-24.

    ObjectiveA study is carried out of the spatial distribution and time dependence of electric and thermal fields in the tissue around a radiofrequency (RF) electrode used in pain therapy. Finite-element calculation of the fields is performed, and results are compared with ex vivo tissue data. Field predictions are made for continuous and for pulsed RF applications.DesignA special RF cannula electrode is constructed with both macro and micro thermocouple sensors to measure both average and rapid, transitory temperature effects. Temperatures and impedances are recorded in liver and egg-white models using signal outputs from a commercially available RF lesion generator. These data are compared with the results of finite-element calculations using electric field equations and the bio-heat equation.ResultsAverage and pulsatory temperatures at the RF electrode are measured. Rapid temperature spikes during pulsed RF bursts are observed. These data compared well with theoretical calculations using known electrical and thermal tissue parameters.ConclusionContinuous RF lesioning causes heat destruction of neurons. Pulsed RF lesioning (PRFL) produces heat bursts with temperatures in the range associated with destructive heat lesions. PRFL also produces very high electric fields that may be capable of disrupting neuronal membranes and function. Finite-element calculations agree substantially with the measured data, giving confidence to their predictions of fields around the RF electrode.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…