-
- Shelley-Ann M Girwar, Jozefine C Verloop, Marta Fiocco, Stephen P Sutch, Mattijs E Numans, and Marc A Bruijnzeels.
- Department of Public Health and Primary Care, Leiden University Medical Centre, Turfmarkt 99, 2511 DP, the Hague, the Netherlands. Email: s.a.girwar@lumc.nl.
- Am J Manag Care. 2022 Apr 1; 28 (4): e140-e145.
ObjectivesTo produce an efficient and practically implementable method, based on primary care data exclusively, to identify patients with complex care needs who have problems in several health domains and are experiencing a mismatch of care. The Johns Hopkins ACG System was explored as a tool for identification, using its Aggregated Diagnosis Group (ADG) categories.Study DesignRetrospective cross-sectional study using general practitioners' electronic health records combined with hospital data.MethodsA prediction model for patients with complex care needs was developed using a primary care population of 105,345 individuals. Dependent variables in the model included age, sex, and the 32 ADGs. The prediction model was externally validated on 30,793 primary care patients. Discrimination and calibrations were assessed by computing C statistics and by visual inspection of the calibration plot, respectively.ResultsOur model was able to discriminate very well between complex and noncomplex patients (C statistic = 0.9; 95% CI, 0.88-0.92), whereas the calibration plot suggests that the model provides overestimates of complex patients.ConclusionsWith this study, the ACG System has proven to be a useful tool in the identification of patients with complex care needs in primary care, opening up possibilities for tailored interventions of care management for this complex group of patients. Utilizing ADGs, the prediction model that we developed had a very good discriminatory ability to identify those complex patients. However, the calibrating ability of the model still needs improvement.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.