-
Intensive care medicine · May 2013
Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults.
- Alain Combes, Jean Chastre, Nicolas Bréchot, Pascal Leprince, Jean-Louis Trouillet, Guillaume Tachon, Guillaume Hekimian, and Sybille Merceron.
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Institute of Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux de Paris-Université Pierre et Marie Curie, Paris 6, France.
- Intensive Care Med. 2013 May 1;39(5):838-46.
PurposeThis study was designed to optimize the latest generation venovenous (vv)-extracorporeal membrane oxygenation (ECMO)-circuit configuration and settings based on the evaluation of blood oxygenation and CO2 removal determinants in patients with severe acute respiratory distress syndrome (ARDS) on ultraprotective mechanical ventilation.MethodsBlood gases and hemodynamic parameters were evaluated after changing one of three ECMO settings, namely, circuit blood flow, FiO(2ECMO) (fraction of inspired oxygen in circuit), or sweep gas flow ventilating the membrane, while leaving the other two parameters at their maximum setting.ResultsTen mechanically ventilated ARDS patients (mean age 44 ± 16 years; 6 males; mean hemoglobin 8.0 ± 1.8 g/dL) on ECMO for a mean of 9.0 ± 3.8 days) receiving femoro-jugular vv-ECMO were evaluated. vv-ECMO blood flow and FiO(2ECMO) determined arterial oxygenation. Decreasing the ECMO flow from its baseline maximum value (5.8 ± 0.8 L/min) to 40% less (2.4 ± 0.3 L/min) significantly decreased mean PaO2 (arterial oxygen tension; 88 ± 24 to 45 ± 9 mm Hg; p < 0.001) and SaO2 (oxygen saturation; 97 ± 2 to 82 ± 10%; p < 0.001). When the ECMO flow/cardiac output was >60%, SaO2 was always >90%. Alternatively, the rate of sweep gas flow through the membrane lung determined blood decarboxylation, while PaCO2 (arterial carbon dioxide tension) was unaffected when the ECMO blood flow and FiO(2ECMO) were reduced to <2.5 L/min and 40%, respectively. In three additional patients evaluated before and after red blood cell transfusion, O2 delivery increased after transfusion, allowing lower ECMO flows to reach adequate SaO2.ConclusionsFor severe ARDS patients receiving femoro-jugular vv-ECMO, blood flow was the main determinant of arterial oxygenation, while CO2 elimination depended on sweep gas flow through the oxygenator. An ECMO flow/cardiac output >60% was constantly associated with adequate blood oxygenation and oxygen transport and delivery.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.