• Cochrane Db Syst Rev · Oct 2014

    Review Meta Analysis

    Aquatic exercise training for fibromyalgia.

    • Julia Bidonde, Angela J Busch, Sandra C Webber, Candice L Schachter, Adrienne Danyliw, Tom J Overend, Rachel S Richards, and Tamara Rader.
    • Community Health & Epidemiology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, Canada, S7N 5E5.
    • Cochrane Db Syst Rev. 2014 Oct 28; 2014 (10): CD011336CD011336.

    BackgroundExercise training is commonly recommended for individuals with fibromyalgia. This review examined the effects of supervised group aquatic training programs (led by an instructor). We defined aquatic training as exercising in a pool while standing at waist, chest, or shoulder depth. This review is part of the update of the 'Exercise for treating fibromyalgia syndrome' review first published in 2002, and previously updated in 2007.ObjectivesThe objective of this systematic review was to evaluate the benefits and harms of aquatic exercise training in adults with fibromyalgia.Search MethodsWe searched The Cochrane Library 2013, Issue 2 (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, Health Technology Assessment Database, NHS Economic Evaluation Database), MEDLINE, EMBASE, CINAHL, PEDro, Dissertation Abstracts, WHO international Clinical Trials Registry Platform, and AMED, as well as other sources (i.e., reference lists from key journals, identified articles, meta-analyses, and reviews of all types of treatment for fibromyalgia) from inception to October 2013. Using Cochrane methods, we screened citations, abstracts, and full-text articles. Subsequently, we identified aquatic exercise training studies.Selection CriteriaSelection criteria were: a) full-text publication of a randomized controlled trial (RCT) in adults diagnosed with fibromyalgia based on published criteria, and b) between-group data for an aquatic intervention and a control or other intervention. We excluded studies if exercise in water was less than 50% of the full intervention.Data Collection And AnalysisWe independently assessed risk of bias and extracted data (24 outcomes), of which we designated seven as major outcomes: multidimensional function, self reported physical function, pain, stiffness, muscle strength, submaximal cardiorespiratory function, withdrawal rates and adverse effects. We resolved discordance through discussion. We evaluated interventions using mean differences (MD) or standardized mean differences (SMD) and 95% confidence intervals (95% CI). Where two or more studies provided data for an outcome, we carried out meta-analysis. In addition, we set and used a 15% threshold for calculation of clinically relevant differences.Main ResultsWe included 16 aquatic exercise training studies (N = 881; 866 women and 15 men). Nine studies compared aquatic exercise to control, five studies compared aquatic to land-based exercise, and two compared aquatic exercise to a different aquatic exercise program.We rated the risk of bias related to random sequence generation (selection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), blinding of outcome assessors (detection bias), and other bias as low. We rated blinding of participants and personnel (selection and performance bias) and allocation concealment (selection bias) as low risk and unclear. The assessment of the evidence showed limitations related to imprecision, high statistical heterogeneity, and wide confidence intervals. Aquatic versus controlWe found statistically significant improvements (P value < 0.05) in all of the major outcomes. Based on a 100-point scale, multidimensional function improved by six units (MD -5.97, 95% CI -9.06 to -2.88; number needed to treat (NNT) 5, 95% CI 3 to 9), self reported physical function by four units (MD -4.35, 95% CI -7.77 to -0.94; NNT 6, 95% CI 3 to 22), pain by seven units (MD -6.59, 95% CI -10.71 to -2.48; NNT 5, 95% CI 3 to 8), and stiffness by 18 units (MD -18.34, 95% CI -35.75 to -0.93; NNT 3, 95% CI 2 to 24) more in the aquatic than the control groups. The SMD for muscle strength as measured by knee extension and hand grip was 0.63 standard deviations higher compared to the control group (SMD 0.63, 95% CI 0.20 to 1.05; NNT 4, 95% CI 3 to 12) and cardiovascular submaximal function improved by 37 meters on six-minute walk test (95% CI 4.14 to 69.92). Only two major outcomes, stiffness and muscle strength, met the 15% threshold for clinical relevance (improved by 27% and 37% respectively). Withdrawals were similar in the aquatic and control groups and adverse effects were poorly reported, with no serious adverse effects reported. Aquatic versus land-basedThere were no statistically significant differences between interventions for multidimensional function, self reported physical function, pain or stiffness: 0.91 units (95% CI -4.01 to 5.83), -5.85 units (95% CI -12.33 to 0.63), -0.75 units (95% CI -10.72 to 9.23), and two units (95% CI -8.88 to 1.28) respectively (all based on a 100-point scale), or in submaximal cardiorespiratory function (three seconds on a 100-meter walk test, 95% CI -1.77 to 7.77). We found a statistically significant difference between interventions for strength, favoring land-based training (2.40 kilo pascals grip strength, 95% CI 4.52 to 0.28). None of the outcomes in the aquatic versus land comparison reached clinically relevant differences of 15%. Withdrawals were similar in the aquatic and land groups and adverse effects were poorly reported, with no serious adverse effects in either group. Aquatic versus aquatic (Ai Chi versus stretching in the water, exercise in pool water versus exercise in sea water)Among the major outcomes the only statistically significant difference between interventions was for stiffness, favoring Ai Chi (1.00 on a 100-point scale, 95% CI 0.31 to 1.69).Authors' ConclusionsLow to moderate quality evidence relative to control suggests that aquatic training is beneficial for improving wellness, symptoms, and fitness in adults with fibromyalgia. Very low to low quality evidence suggests that there are benefits of aquatic and land-based exercise, except in muscle strength (very low quality evidence favoring land). No serious adverse effects were reported.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.