-
Eur. J. Clin. Invest. · Aug 2022
Iguratimod Inhibits Skin Fibrosis by regulating TGF-β1/Smad Signaling Pathway in Systemic Sclerosis.
- Xi Xie, Haina Gan, Jing Tian, Fen Li, Jinwei Chen, Jia Wang, Jiafeng Liao, and Shu Li.
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, China.
- Eur. J. Clin. Invest. 2022 Aug 1; 52 (8): e13791.
BackgroundIguratimod (T-614), exerting a powerful anti-inflammatory ability, has therapeutic efficacy in multiple autoimmune diseases. However, the effect of T-614 on systemic sclerosis (SSc) is unclear. Here, we investigate the effect and molecular mechanism of T-614 in experimental SSc models.MethodsIn vitro, cultured dermal fibroblasts from four SSc patients were subjected to different doses of T-614 in the presence or absence of TGF-β1 stimulation. Cell proliferation, apoptosis and migration were determined by CCK-8, flow cytometry and transwell assay, respectively. Fibrosis markers and smad signalling pathway-related proteins were detected by immunoblotting and immunofluorescence. In vivo, a bleomycin-induced SSc mouse model was used to evaluate the effect of T-614 on skin fibrosis. Pathological changes in skin tissues were evaluated by HE, Masson staining and immunohistochemistry.ResultsIn the study, we found T-614 inhibited TGF-β1-induced cell proliferation, migration and promoted apoptosis in a dose-dependent manner (all p < 0.01). T-614 partially reversed TGF-β1-induced upregulation of fibrosis markers and phosphorylation of smad2 and smad3 and blocked p-Smad3 nuclear translocation (all p < 0.05), suggesting T-614 may inhibit dermal fibroblasts activation by regulating TGF-β1/smad pathway. In vivo experiments, T-614 alleviated skin thickness in bleomycin-induced SSc mice (all p < 0.05). The expression of fibrosis markers and the infiltration of macrophages in skin tissue were significantly decreased after T-614 treatment (all p < 0.05).ConclusionOur preliminary data indicated T-614 inhibited dermal fibroblasts activation and skin fibrosis at least partly by regulating TGF-β1/smad pathway in experimental SSc models and may be a promising therapeutic agent for SSc.© 2022 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.