• J Neuroimaging · Sep 2022

    Bayesian deep learning outperforms clinical trial estimators of intracerebral and intraventricular hemorrhage volume.

    • Matthew F Sharrock, W Andrew Mould, Meghan Hildreth, E Paul Ryu, Nathan Walborn, Issam A Awad, Daniel F Hanley, and John Muschelli.
    • Division of Neurocritical Care, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
    • J Neuroimaging. 2022 Sep 1; 32 (5): 968976968-976.

    Background And PurposeIntracerebral hemorrhage (ICH) and intraventricular hemorrhage (IVH) clinical trials rely on manual linear and semi-quantitative (LSQ) estimators like the ABC/2, modified Graeb and IVH scores for timely volumetric estimation from CT. Deep learning (DL) volumetrics of ICH have recently approached the accuracy of gold-standard planimetry. However, DL and LSQ strategies have been limited by unquantified uncertainty, in particular when ICH and IVH estimates intersect. Bayesian deep learning methods can be used to approximate uncertainty, presenting an opportunity to improve quality assurance in clinical trials.MethodsA DL model was trained to simultaneously segment ICH and IVH using diagnostic CT data from the Minimally Invasive Surgery Plus Alteplase for ICH Evacuation (MISTIE) III and Clot Lysis: Evaluating Accelerated Resolution of IVH (CLEAR) III clinical trials. Bayesian uncertainty approximation was performed using Monte-Carlo dropout. We compared the performance of our model with estimators used in the CLEAR IVH and MISTIE II trials. The reliability of planimetry, DL, and LSQ volumetrics in the setting of high ICH and IVH intersection is quantified using consensus estimates.ResultsOur DL model produced volume correlations and median Dice scores of .994 and .946 for ICH in MISTIE II, and .980 and .863 for IVH in CLEAR IVH, respectively, outperforming LSQ estimates from the clinical trials. We found significant linear relationships between ICH uncertainty, Dice scores (r = -.849), and relative volume difference (r = .735).ConclusionIn our validation clinical trial dataset, DL models with Bayesian uncertainty approximation provided superior volumetric estimates to LSQ methods with real-time estimates of model uncertainty.© 2022 American Society of Neuroimaging.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…