• J Hosp Med · Jan 2022

    Derivation of a natural language processing algorithm to identify febrile infants.

    • Jeffrey P Yaeger, Jiahao Lu, Jeremiah Jones, Ashkan Ertefaie, Kevin Fiscella, and Daniel Gildea.
    • Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA.
    • J Hosp Med. 2022 Jan 1; 17 (1): 11-18.

    BackgroundDiagnostic codes can retrospectively identify samples of febrile infants, but sensitivity is low, resulting in many febrile infants eluding detection. To ensure study samples are representative, an improved approach is needed.ObjectiveTo derive and internally validate a natural language processing algorithm to identify febrile infants and compare its performance to diagnostic codes.MethodsThis cross-sectional study consisted of infants aged 0-90 days brought to one pediatric emergency department from January 2016 to December 2017. We aimed to identify infants with fever, defined as a documented temperature ≥38°C. We used 2017 clinical notes to develop two rule-based algorithms to identify infants with fever and tested them on data from 2016. Using manual abstraction as the gold standard, we compared performance of the two rule-based algorithms (Models 1, 2) to four previously published diagnostic code groups (Models 5-8) using area under the receiver-operating characteristics curve (AUC), sensitivity, and specificity.ResultsFor the test set (n = 1190 infants), 184 infants were febrile (15.5%). The AUCs (0.92-0.95) and sensitivities (86%-92%) of Models 1 and 2 were significantly greater than Models 5-8 (0.67-0.74; 20%-74%) with similar specificities (93%-99%). In contrast to Models 5-8, samples from Models 1 and 2 demonstrated similar characteristics to the gold standard, including fever prevalence, median age, and rates of bacterial infections, hospitalizations, and severe outcomes.ConclusionsFindings suggest rule-based algorithms can accurately identify febrile infants with greater sensitivity while preserving specificity compared to diagnostic codes. If externally validated, rule-based algorithms may be important tools to create representative study samples, thereby improving generalizability of findings.© 2022 Society of Hospital Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…