• Spine · Jul 2008

    Biomechanical contribution of transverse connectors to segmental stability following long segment instrumentation with thoracic pedicle screws.

    • Timothy R Kuklo, Anton E Dmitriev, Mario J Cardoso, Ronald A Lehman, Mark Erickson, and Norman W Gill.
    • Department of Orthopaedic Surgery, WA University in St Louis, St Louis, MO, USA. kuklot@wustl.edu
    • Spine. 2008 Jul 1;33(15):E482-7.

    Study DesignAn in vitro biomechanical cadaver study of long segment thoracic pedicle screw constructs with transverse connectors (TC).ObjectiveTo determine the resultant degree of motion of the instrumented thoracic spine after segmental pedicle screw instrumentation with and without TC. SUMMARY OF BACKGROUND DATA.: TC are generally not thought to be necessary with thoracic pedicle screw constructs, yet to date no study has reported the effect of TCs after all pedicle screw long thoracic fusions.MethodsEight human cadaveric spines were potted and then instrumented from T4-T10 with bilateral 5.5 mm multiaxial titanium (Ti) pedicle screws and 5.5 mm contoured Ti rods. Specimens were tested with a six-degree-of-freedom spine stimulator in the intact condition, after instrumentation, after placement of 1 TC (3 different locations) and after placement of both TCs. Data were analyzed by loading modality (axial rotation, flexion-extension, and lateral bending) using one-way analysis of variance with an alpha of 0.05. Paired t tests were used for post hoc analysis with correction for multiple comparisons.ResultsThere was no difference with the addition of 1 or 2 TCs in terms of flexion-extension or lateral bending when compared to the instrumented condition (P > 0.05). Biomechanical testing of the long-segment thoracic constructs in axial rotation (torsion) loading modes generated the most significant findings of this study. After instrumentation with thoracic pedicle screws, T4-T10 full ROM was significantly reduced from the intact condition (P < 0.05). On average, TPS alone resulted in a 65% decrease in ROM. However, the addition of a transverse connector at 1 of the 3 positions tested yielded another 20% improvement in axial segmental stability as represented by further ROM reduction. These differences were significant from the TPS only group (no TCs), regardless of the TC position (P < 0.05). Furthermore, 2 TCs placed at the proximal and distal ends of the construct provided the greatest biomechanical axial stability to the instrumented specimens (P < 0.05). This was highlighted by an average of 35% ROM reduction from the stability level achieved with the TPS only constructs (P < 0.05), or an additional 15% improvement in axial stability over a single TC.ConclusionFor long thoracic pedicle screw constructs, the addition of 1 or 2 TCs significantly decreases construct axial rotation, which is the primary plane of motion for the thoracic spinal region. A single TC contributed to a significant reduction of T4-T10 ROM (an additional 20%) relative to TPS fixation alone (P < 0.05), while the location of the TC within the construct was irrelevant. A second TC had an additive effect (an additional 15% reduction) on axial stability. (P < 0.05) Flexion-extension and lateral bending are not affected. Single TC significantly improves axial rotation stability in long thoracic pedicle screw constructs. Two crosslinks, however, are better than one.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.