• Am J Emerg Med · Jul 2022

    Evaluating atrial fibrillation artificial intelligence for the emergency department, statistical and clinical implications.

    • Ann E Kaminski, Michael L Albus, Colleen T Ball, Launia J White, Johnathan M Sheele, Zachi I Attia, Paul A Friedman, Demilade A Adedinsewo, and Peter A Noseworthy.
    • Department of Emergency Medicine, Mayo Clinic, Jacksonville, FL, United States of America. Electronic address: kaminski.ann@mayo.edu.
    • Am J Emerg Med. 2022 Jul 1; 57: 98-102.

    ObjectiveAn artificial intelligence (AI) algorithm has been developed to detect the electrocardiographic signature of atrial fibrillation (AF) present on an electrocardiogram (ECG) obtained during normal sinus rhythm. We evaluated the ability of this algorithm to predict incident AF in an emergency department (ED) cohort of patients presenting with palpitations without concurrent AF.MethodsThis retrospective study included patients 18 years and older who presented with palpitations to one of 15 ED sites and had a 12‑lead ECG performed. Patients with prior AF or newly diagnosed AF during the ED visit were excluded. Of the remaining patients, those with a follow up ECG or Holter monitor in the subsequent year were included. We evaluated the performance of the AI-ECG output to predict incident AF within one year of the index ECG by estimating an area under the receiver operating characteristics curve (AUC). Sensitivity, specificity, and positive and negative predictive values were determined at the optimum threshold (maximizing sensitivity and specificity), and thresholds by output decile for the sample.ResultsA total of 1403 patients were included. Forty-three (3.1%) patients were diagnosed with new AF during the following year. The AI-ECG algorithm predicted AF with an AUC of 0.74 (95% CI 0.68-0.80), and an optimum threshold with sensitivity 79.1% (95% Confidence Interval (CI) 66.9%-91.2%), and specificity 66.1% (95% CI 63.6%-68.6%).ConclusionsWe found this AI-ECG AF algorithm to maintain statistical significance in predicting incident AF, with clinical utility for screening purposes limited in this ED population with a low incidence of AF.Copyright © 2022 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…