• J Clin Monit Comput · Feb 2023

    Multicenter Study

    Development and validation of clinical prediction models for acute kidney injury recovery at hospital discharge in critically ill adults.

    • Chao-Yuan Huang, Fabian Güiza, Greet De Vlieger, Pieter Wouters, Jan Gunst, Michael Casaer, Ilse Vanhorebeek, Inge Derese, Greet Van den Berghe, and Geert Meyfroidt.
    • Laboratory of Intensive Care Medicine, Academic Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Louvain, Belgium.
    • J Clin Monit Comput. 2023 Feb 1; 37 (1): 113125113-125.

    PurposeAcute kidney injury (AKI) recovery prediction remains challenging. The purpose of the present study is to develop and validate prediction models for AKI recovery at hospital discharge in critically ill patients with ICU-acquired AKI stage 3 (AKI-3).MethodsModels were developed and validated in a development cohort (n = 229) and a matched validation cohort (n = 244) from the multicenter EPaNIC database to create prediction models with the least absolute shrinkage and selection operator (Lasso) machine-learning algorithm. We evaluated the discrimination and calibration of the models and compared their performance with plasma neutrophil gelatinase-associated lipocalin (NGAL) measured on first AKI-3 day (NGAL_AKI3) and reference model that only based on age.ResultsComplete recovery and complete or partial recovery occurred in 33.20% and 51.23% of the validation cohort patients respectively. The prediction model for complete recovery based on age, need for renal replacement therapy (RRT), diagnostic group (cardiac/surgical/trauma/others), and sepsis on admission had an area under the receiver operating characteristics curve (AUROC) of 0.53. The prediction model for complete or partial recovery based on age, need for RRT, platelet count, urea, and white blood cell count had an AUROC of 0.61. NGAL_AKI3 showed AUROCs of 0.55 and 0.53 respectively. In cardiac patients, the models had higher AUROCs of 0.60 and 0.71 than NGAL_AKI3's AUROCs of 0.52 and 0.54. The developed models demonstrated a better performance over the reference models (only based on age) for cardiac surgery patients, but not for patients with sepsis and for a general ICU population.ConclusionModels to predict AKI recovery upon hospital discharge in critically ill patients with AKI-3 showed poor performance in the general ICU population, similar to the biomarker NGAL. In cardiac surgery patients, discrimination was acceptable, and better than NGAL. These findings demonstrate the difficulty of predicting non-reversible AKI early.© 2022. The Author(s), under exclusive licence to Springer Nature B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…