• Am. J. Respir. Crit. Care Med. · Sep 2022

    Randomized Controlled Trial Multicenter Study

    Exacerbation Profile and Risk Factors in a T2-Low Severe Asthma Population.

    • P Jane McDowell, John Busby, Catherine E Hanratty, Ratko Djukanovic, Ashley Woodcock, Samantha Walker, Timothy Colin Hardman, Joseph R Arron, David F Choy, Peter Bradding, Chris E Brightling, Rekha Chaudhuri, Douglas Cowan, Adel H Mansur, Stephen J Fowler, Sarah E Diver, Peter Howarth, James Lordan, Andrew Menzies-Gow, Timothy Harrison, Douglas S Robinson, HolwegCecile T JCTJGenentech Inc., San Francisco, California., John G Matthews, Ian D Pavord, and Liam G Heaney.
    • Center for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom.
    • Am. J. Respir. Crit. Care Med. 2022 Sep 1; 206 (5): 545553545-553.

    AbstractRationale: The past 25 years have seen huge progress in understanding of the pathobiology of type-2 (T2) asthma, identification of measurable biomarkers, and the emergence of novel monoclonal antibody treatments. Although present in a minority of patients with severe asthma, very little is known about the mechanisms underlying T2-low asthma, making it a significant unmet need in asthma research. Objectives: The objective of this study was to explore the differences between study exacerbators and nonexacerbators, to describe physiological changes at exacerbation in those who are T2HIGH and T2LOW at the time of exacerbation, and to evaluate the stability of inflammatory phenotypes when stable and at exacerbation. Methods: Exacerbation assessment was a prespecified secondary analysis of data from a 48-week, multicenter, randomized controlled clinical study comparing the use of biomarkers and symptoms to adjust steroid treatment in a T2-low severe asthma-enriched cohort. Participants were phenotyped as T2LOW (fractional exhaled nitric oxide ⩽ 20 ppb and blood eosinophil count ⩽ 150 cells/µl) or T2HIGH (fractional exhaled nitric oxide > 20 or blood eosinophil count > 150) at study enrollment and at each exacerbation. Here, we report the findings of the exacerbation analyses, including comparison of exacerbators and nonexacerbators, the physiological changes at exacerbation in those who had evidence of T2 biology at exacerbation versus those that did not, and the stability of inflammatory phenotypes when stable and at exacerbation. Measurements and Main Results: Of the 301 participants, 60.8% (183) had one or more self-reported exacerbations (total of 390). Exacerbators were more likely to be female, have a higher body mass index, and have more exacerbations requiring oral corticosteroid and unscheduled primary care attendances for exacerbations. At enrollment, 23.6% (71) were T2LOW and 76.4% (230) T2HIGH. The T2LOW group had more asthma primary care attendances, were more likely to have a previous admission to HDU (high dependency unit)/ICU and to be receiving maintenance oral corticosteroids. At exacerbation, the T2LOW events were indistinguishable from T2HIGH exacerbations in terms of lung function (mean fall in T2LOW FEV1, 200 [400] ml vs. T2HIGH 200 [300] ml; P = 0.93) and symptom increase (ACQ5: T2LOW, 1.4 [0.8] vs. T2HIGH, 1.3 [0.8]; P = 0.72), with no increase in T2 biomarkers from stable to exacerbation state in the T2LOW exacerbations. The inflammatory phenotype within individual patients was dynamic; inflammatory phenotype at study entry did not have a significant association with exacerbation phenotype. Conclusions: Asthma exacerbations demonstrating a T2LOW phenotype were physiologically and symptomatically similar to T2HIGH exacerbations. T2LOW asthma was an unstable phenotype, suggesting that exacerbation phenotyping should occur at the time of exacerbation. The clinically significant exacerbations in participants without evidence of T2 biology at the time of exacerbation highlight the unmet and pressing need to further understand the mechanisms at play in non-T2 asthma. Clinical trial registered with www.clinicaltrials.gov (NCT02717689).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.