• Resuscitation · Jul 2022

    Bedside Monitoring of Hypoxic Ischemic Brain Injury Using Low-Field, Portable Brain Magnetic Resonance Imaging After Cardiac Arrest.

    • Rachel Beekman, Anna Crawford, Mercy H Mazurek, Anjali M Prabhat, Isha R Chavva, Nethra Parasuram, Noah Kim, Jennifer A Kim, Nils Petersen, Adam de Havenon, Akhil Khosla, Shyoko Honiden, P Elliott Miller, Charles Wira, James Daley, Seyedmehdi Payabvash, David M Greer, Emily J Gilmore, Taylor KimberlyWWDepartment of Neurology, Massachusetts General Hospital, Boston, MA, USA., and Kevin N Sheth.
    • Department of Neurology, Yale School of Medicine, New Haven, CT, USA. Electronic address: Rachel.Beekman@yale.edu.
    • Resuscitation. 2022 Jul 1; 176: 150158150-158.

    BackgroundAssessment of brain injury severity is critically important after survival from cardiac arrest (CA). Recent advances in low-field MRI technology have permitted the acquisition of clinically useful bedside brain imaging. Our objective was to deploy a novel approach for evaluating brain injury after CA in critically ill patients at high risk for adverse neurological outcome.MethodsThis retrospective, single center study involved review of all consecutive portable MRIs performed as part of clinical care for CA patients between September 2020 and January 2022. Portable MR images were retrospectively reviewed by a blinded board-certified neuroradiologist (S.P.). Fluid-inversion recovery (FLAIR) signal intensities were measured in select regions of interest.ResultsWe performed 22 low-field MRI examinations in 19 patients resuscitated from CA (68.4% male, mean [standard deviation] age, 51.8 [13.1] years). Twelve patients (63.2%) had findings consistent with HIBI on conventional neuroimaging radiology report. Low-field MRI detected findings consistent with HIBI in all of these patients. Low-field MRI was acquired at a median (interquartile range) of 78 (40-136) hours post-arrest. Quantitatively, we measured FLAIR signal intensity in three regions of interest, which were higher amongst patients with confirmed HIBI. Low-field MRI was completed in all patients without disruption of intensive care unit equipment monitoring and no safety events occurred.ConclusionIn a critically ill CA population in whom MR imaging is often not feasible, low-field MRI can be deployed at the bedside to identify HIBI. Low-field MRI provides an opportunity to evaluate the time-dependent nature of MRI findings in CA survivors.Copyright © 2022 Elsevier B.V. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.