• Br J Anaesth · Jul 2022

    Derivation and external validation of a 30-day mortality risk prediction model for older patients having emergency general surgery.

    • Simon Feng, Carl van Walraven, Manoj M Lalu, Husein Moloo, Reilly Musselman, and Daniel I McIsaac.
    • Department of Anesthesiology and Pain Medicine, University of Ottawa, Ottawa, Canada. Electronic address: simon.feng@thp.ca.
    • Br J Anaesth. 2022 Jul 1; 129 (1): 33-40.

    BackgroundOlder people (≥65 yr) are at increased risk of morbidity and mortality after emergency general surgery. Risk prediction models are needed to guide decision making in this high-risk population. Existing models have substantial limitations and lack external validation, potentially limiting their applicability in clinical use. We aimed to derive and validate, both internally and externally, a multivariable model to predict 30-day mortality risk in older patients undergoing emergency general surgery.MethodsAfter protocol publication, we used the National Surgical Quality Improvement Program (NSQIP) database (2012-6; estimated to contain 90% data from the USA and 10% from Canada) to derive and internally validate a model to predict 30-day mortality for older people having emergency general surgery using logistic regression with elastic net regularisation. Internal validation was done with 10-fold cross-validation. External validation was done using a temporally separate health administrative database exclusively from Ontario, Canada.ResultsOverall, 6012 (12.0%) of the 50 221 patients died within 30 days. The model demonstrated strong discrimination (area under the curve [AUC]=0.871) and calibration across the spectrum of observed and predicted risks. Ten-fold internal cross-validation demonstrated minimal optimism (AUC=0.851, optimism 0.019 [standard deviation=0.06]) with excellent calibration. External validation demonstrated lower discrimination (AUC=0.700) and degraded calibration.ConclusionA multivariable mortality risk prediction model was strongly discriminative and well calibrated internally. However, poor external validation suggests the model may not be generalisable to non-NSQIP data and hospitals. The findings highlight the importance of external validation before clinical application of risk models.Copyright © 2022. Published by Elsevier Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…