• Respiratory care · Aug 2022

    Real-Time Analysis of Dry-Side Nebulization With Heated Wire Humidification During Mechanical Ventilation.

    • Janice A Lee, Michael McPeck, Ann D Cuccia, and Gerald C Smaldone.
    • Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York. Janice.lee@stonybrookmedicine.edu.
    • Respir Care. 2022 Aug 1; 67 (8): 914928914-928.

    BackgroundRecent observational studies of nebulizers placed on the wet side of the humidifier suggest that, after some time, considerable condensation can form, which triggers an occlusion alarm. In the current study, an inline breath-enhanced jet nebulizer was tested and compared in vitro with a vibrating mesh nebulizer on the humidifier dry-inlet side of the ventilator circuit.MethodsTwo duty cycle breathing patterns were tested during continuous infusion (5 or 10 mL/h) with and without dynamic changes in infusion flow and duty cycle, or bolus delivery (3 or 6 mL) of radiolabeled saline solution. Inhaled mass (IM) was measured by a real-time ratemeter (µCi/min) and analyzed by multiple linear regression.ResultsDuring simple continuous infusion, IM increased linearly for both nebulizer types. IM variability was attributable to the duty cycle (P < .001) (34%) and infusion flow (P < .001) (32%) but independent of nebulizer technology (P = .38) (7%). Dynamic continuous infusion studies that simulate clinical scenarios with ventilator and pump flow changes demonstrated a linear increase in the rate of aerosol that was dependent on pump flow (P < .001) (63%) and minimally dependent on the duty cycle (P = .003) (8%). During bolus treatments, IM increased linearly to plateau. IM variability was attributable to the duty cycle (P < .001) (40%) and residual radioactivity in the nebulizer (P < .001) (20%). Separate analysis revealed that the vibrating mesh nebulizer residual volume contributed 16% of the variability and inline breath-enhanced jet nebulizer contributed 5%. IM variability was independent of bolus volume (P = .82) (1%). System losses were similar (the inline breath-enhanced jet nebulizer: 32% residual in nebulizer; the vibrating mesh nebulizer: 34% in circuitry).ConclusionsAerosol delivery during continuous infusion and bolus delivery was comparable between the inline breath-enhanced jet nebulizer and the vibrating mesh nebulizer, and was determined by pump flow and initial ventilator settings. Further adjustments in ventilator settings did not significantly affect drug delivery. Expiratory losses predicted by the duty cycle were reduced with placement of the nebulizer near the ventilator outlet.Copyright © 2022 by Daedalus Enterprises.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.