-
Am. J. Respir. Crit. Care Med. · Oct 2022
Traffic-Related Air Pollution and Lung Cancer Incidence: The California Multiethnic Cohort Study.
- Iona Cheng, Juan Yang, Chiuchen Tseng, Jun Wu, Salma Shariff-Marco, Sung-Shim Lani Park, Shannon M Conroy, Pushkar P Inamdar, Scott Fruin, Timothy Larson, Veronica W Setiawan, Mindy C DeRouen, Scarlett Lin Gomez, Lynne R Wilkens, Loïc Le Marchand, Daniel O Stram, Jonathan Samet, Beate Ritz, and Anna H Wu.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.
- Am. J. Respir. Crit. Care Med. 2022 Oct 15; 206 (8): 100810181008-1018.
AbstractRationale: Although the contribution of air pollution to lung cancer risk is well characterized, few studies have been conducted in racially, ethnically, and socioeconomically diverse populations. Objectives: To examine the association between traffic-related air pollution and risk of lung cancer in a racially, ethnically, and socioeconomically diverse cohort. Methods: Among 97,288 California participants of the Multiethnic Cohort Study, we used Cox proportional hazards regression to examine associations between time-varying traffic-related air pollutants (gaseous and particulate matter pollutants and regional benzene) and lung cancer risk (n = 2,796 cases; average follow-up = 17 yr), adjusting for demographics, lifetime smoking, occupation, neighborhood socioeconomic status (nSES), and lifestyle factors. Subgroup analyses were conducted for race, ethnicity, nSES, and other factors. Measurements and Main Results: Among all participants, lung cancer risk was positively associated with nitrogen oxide (hazard ratio [HR], 1.15 per 50 ppb; 95% confidence interval [CI], 0.99-1.33), nitrogen dioxide (HR, 1.12 per 20 ppb; 95% CI, 0.95-1.32), fine particulate matter with aerodynamic diameter <2.5 μm (HR, 1.20 per 10 μg/m3; 95% CI, 1.01-1.43), carbon monoxide (HR, 1.29 per 1,000 ppb; 95% CI, 0.99-1.67), and regional benzene (HR, 1.17 per 1 ppb; 95% CI, 1.02-1.34) exposures. These patterns of associations were driven by associations among African American and Latino American groups. There was no formal evidence for heterogeneity of effects by nSES (P heterogeneity > 0.21), although participants residing in low-SES neighborhoods had increased lung cancer risk associated with nitrogen oxides, and no association was observed among those in high-SES neighborhoods. Conclusions: These findings in a large multiethnic population reflect an association between lung cancer and the mixture of traffic-related air pollution and not a particular individual pollutant. They are consistent with the adverse effects of air pollution that have been described in less racially, ethnically, and socioeconomically diverse populations. Our results also suggest an increased risk of lung cancer among those residing in low-SES neighborhoods.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.