• Lancet neurology · Aug 2022

    Review

    Tau biomarkers in Alzheimer's disease: towards implementation in clinical practice and trials.

    • Rik Ossenkoppele, Rik van der Kant, and Oskar Hansson.
    • Clinical Memory Research Unit, Lund University, Malmö, Sweden; Alzheimer Center Amsterdam, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands. Electronic address: r.ossenkoppele@amsterdamumc.nl.
    • Lancet Neurol. 2022 Aug 1; 21 (8): 726-734.

    BackgroundDeposition of tau aggregates is a pathological hallmark of Alzheimer's disease that is closely linked both spatially and temporally to emergence of neurodegeneration and manifestation of clinical symptoms. There is an urgent need for accurate PET, CSF, and plasma biomarkers of tau pathology to improve the diagnostic process in clinical practice and the selection of participants and monitoring of treatment effects in trials.Recent DevelopmentsInnovative second-generation tau-PET tracers with high affinity and selectivity to tau pathology in Alzheimer's disease have enabled detection of tau pathology in medial temporal lobe subregions that are affected in the earliest disease stages. Furthermore, novel but common tau spreading subtypes have been discovered using tau-PET, suggesting much greater interindividual differences in the distribution of tau pathology across the brain than previously assumed. In the CSF biomarker field, novel phosphorylated tau (p-tau) assays have been introduced that better reflect tau tangle load than established CSF biomarkers of tau pathology. The advent of cost-effective and accessible blood-based biomarkers for tau pathophysiology (ie, p-tau181, p-tau217, and p-tau231) might transform the Alzheimer's disease field, as these biomarkers correlate with post-mortem Alzheimer's disease pathology, differentiate Alzheimer's disease from other types of dementia, and predict future progression from normal cognition and mild cognitive impairment to Alzheimer's disease. In controlled investigational settings, improvements in tau-PET and biofluid p-tau markers have led to earlier disease detection, more accurate diagnostic methods, and refinement of prognosis. The anti-tau therapy landscape is rapidly evolving, with multiple ongoing phase 1 and 2 trials of post-translational modification of tau, tau immunotherapy, tau aggregation inhibitors, and targeting production of tau and reduction of intracellular tau levels. Neuroimaging and biofluid tau markers hold potential for optimising such clinical trials by augmenting participant selection, providing evidence of target engagement, and monitoring treatment efficacy. WHERE NEXT?: Major challenges to overcome are the high cost of tau-PET, partial sensitivity to detect early-stage Alzheimer's disease pathology, and off-target tracer binding. Prospective validation studies of biofluid p-tau markers are needed, and assay-related preanalytical and analytical factors need further refinement. Future studies should focus on demonstrating the diagnostic and prognostic accuracy of tau biomarkers-blood-based markers in particular-in non-tertiary settings, such as primary care, which is characterised by a diverse population with medical comorbidities. Large-scale head-to-head studies are needed across different stages of Alzheimer's disease to determine which tau biomarker is optimal in various clinical scenarios, such as early diagnosis, differential diagnosis, and prognosis, and for aspects of clinical trial design, such as proving target engagement, optimising participant selection, and refining monitoring of treatment effects.Copyright © 2022 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.