• Resuscitation · May 2006

    A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation.

    • James T Niemann, John P Rosborough, Leo Kassabian, and Bobak Salami.
    • Department of Emergency Medicine, Division of Cardiology, Harbor-UCLA Medical Center, Box 21, 1000 West Carson Street, Torrance, CA 90509, USA. jniemann@emedharbor.edu
    • Resuscitation. 2006 May 1;69(2):295-301.

    ObjectiveBlood flow during conventional cardiopulmonary resuscitation (CPR) is usually less than adequate to sustain vital organ perfusion. A new chest compression device (LifeBelt) which compresses both the sternum and the lateral thoraces (compression and thoracic constraint) has been developed. The device is light weight, portable, manually powered and mechanically advantaged to minimize user fatigue. The purpose of this study was to evaluate the mechanism of blood flow with the device, determine the optimal compression force and compare the device to standard manual CPR in a swine arrest model.MethodsFollowing anesthesia and instrumentation, intravascular contrast injections were performed in four animals and the performance characteristics of the device were evaluated in eight animals. In a comparative outcome study, 42 anesthetized and instrumented swine were randomized to receive LifeBelt or manual CPR. Ventricular fibrillation (VF) was induced electrically and was untreated for 7.5 min. After 7.5 min, countershocks were administered and chest compressions initiated. Pulseless electrical activity (PEA) was observed after one to three shocks in all animals. CPR was continued until restoration of spontaneous circulation (ROSC) or for 10 min after the first shock. If ROSC had not occurred within 5 min of beginning CPR, 0.01 mg/kg of epinephrine (adrenaline) was administered. During CPR, peak systolic aortic pressure (Ao), diastolic coronary perfusion pressure (CPP-diastolic aortic minus diastolic right pressure) and end-tidal CO(2) were measured.ResultsAngiographic studies demonstrated cardiac compression as the mechanism of blood flow. Optimal performance, determined by coronary perfusion pressure, was observed at a sternal force of 100-130 lb (45-59 kg). In the comparative trial, significant differences in the measured CPP were observed between LifeBelt and manual CPR both at 1 min (15+/-8 mmHg versus 10+/-6 mmHg, p<0.05) and 5 min (17+/-4 mmHg versus 13+/-7 mmHg, p<0.02) of chest compression. A greater (p<0.05) ETCO(2), a marker of cardiac output and systemic perfusion, was observed with LifeBelt CPR (20+/-7 mmHg) than with manual CPR (15+/-5 mmHg) at 1 min. Peak Ao pressures were not different between methods. With the device, 86% of animals were resuscitated compared to 76% in the manual group.ConclusionsBlood flow with the LifeBelt device is primarily the result of cardiac compression. At a sternal force of 100-130 lb (45-59 kg), the device produces greater CPP than well-performed manual CPR during resuscitation from prolonged VF.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…