• Neuromodulation · Dec 2023

    Impedance Characteristics of Stimulation Contacts in Deep Brain Stimulation of the Anterior Nucleus of the Thalamus and Its Relationship to Seizure Outcome in Patients With Refractory Epilepsy.

    • Timo Möttönen, Jukka Peltola, Soila Järvenpää, Joonas Haapasalo, and Kai Lehtimäki.
    • Department of Neurosciences and Rehabilitation, Tampere University Hospital, Tampere, Finland. Electronic address: Timo.mottonen@pshp.fi.
    • Neuromodulation. 2023 Dec 1; 26 (8): 173317411733-1741.

    BackgroundDeep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is an emerging form of adjunctive therapy in focal refractory epilepsy. Unlike conventional DBS targets, the ANT is both encapsulated by white matter layers and located immediately adjacent to the cerebrospinal fluid (CSF) space. Owing to the location of the ANT, implantation has most commonly been performed using a transventricular trajectory. Previous studies suggest different electrical conductivity between gray matter, white matter, and CSF.ObjectivesIn this study, we asked whether therapeutic impedance values from a fully implanted DBS device could be used to deduce the actual location of the active contact to optimize the stimulation site. Secondly, we tested whether impedance values correlate with patient outcomes.Materials And MethodsA total of 16 patients with ANT-DBS for refractory epilepsy were evaluated in this prospective study. Therapeutic impedance values were recorded on regular outpatient clinic visits. Contact locations were analyzed using delayed contrast-enhanced postoperative computed tomography-3T magnetic resonance imaging short tau inversion recovery fusion images previously shown to demonstrate anatomical details around the ANT.ResultsTransventricularly implanted contacts immediately below the CSF surface showed overall lower and slightly decreasing impedances over time compared with higher and more stable impedances in contacts with deeper parenchymal location. Impedance values in transventricularly implanted contacts in the ANT were significantly lower than those in transventricularly implanted contacts outside the ANT or extraventricularly implanted contacts that were typically at the posterior/inferior/lateral border of the ANT. Increasing contact distance from the CSF surface was associated with a linear increase in therapeutic impedance. We also found that therapeutic impedance values were significantly lower in contacts with favorable therapy response than in nonresponding contacts. Finally, we observed a significant correlation between the left- and right-side averaged impedance and the reduction of the total number of seizures.ConclusionsValuable information can be obtained from the noninvasive measurement of therapeutic impedances. The selection of active contacts to target stimulation to the anterior nucleus may be guided by therapeutic impedance measurements to optimize outcome.Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.