-
- Brian J Ring, Kareen Pestana, Vanna Sombatsaphay, Yvette Huet, and Todd Steck.
- Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina. brian.ring44@gmail.com.
- Respir Care. 2022 Oct 1; 67 (10): 121712251217-1225.
BackgroundLittle is known about the fate of expelled viral particulates during the aerosolization of inhaled medications during mechanical ventilation. We hypothesized that breathing patterns that generate a greater degree of shear stress and turbulent air flow will produce a greater concentration of exhaled viral RNA with the presence of a nebulizer during mechanical ventilation.MethodsEight ex vivo pig lungs were utilized as the physiological model. Each lung was dedicated to a specific breathing pattern that consisted of tidal breathing, respiratory distress, cough, and sneeze. Breath simulations were carried out through a commercial mechanical ventilator. Ninety mL of a bacteriophage stock at a concentration of 108 PFU/mL were introduced into the lungs during a 10-min sample collection session. The number of viral particles collected in exhalate was measured using quantitative polymerase chain reaction. The impact of breathing pattern on measured viruses was analyzed through two-way analysis of variance.ResultsThe interaction effect between nebulization and breath pattern on exhaled viral quantity was not statistically significant P = .80, partial η2 = 0.167. The analysis of the main effects indicated that the effects of the breathing pattern and nebulization phase were not statistically significant P = .26, partial η2 = 0.519; P = .98, partial η2 = 0, respectively. There were no statistically significant differences among the breathing patterns related to measurable viral RNA. Coughing produced the most measurable increase in measured viral quantity during the nebulization phase and non-nebulization phase with a mean exhaled viral quantity (3.5 × 105 ng/μL [95% CI 1.6 × 105-5.5 × 105] and 2.7 × 105 ng/μL [95% CI 7.1 × 103-5.5 × 105], respectively). Tidal breathing with the presence of a nebulizer and respiratory distress without a nebulizer produced the lowest measured viral quantities (M = 1.1 × 105 ng/μL [95% CI -1.7 × 105 to 3.9 × 105]; M = 1.2 × 105 ng/μL [95% CI -1.6 × 105 to 4.0 × 105]).ConclusionsIn this ex vivo porcine model, the introduction of a nebulizer did not increase the mean viral RNA captured throughout all of the breathing patterns.Copyright © 2022 by Daedalus Enterprises.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.