• Experimental hematology · May 2004

    Human CD34(+) and CD34(+)CD38(-) hematopoietic progenitors in sickle cell disease differ phenotypically and functionally from normal and suggest distinct subpopulations that generate F cells.

    • Lori Luck, Licheng Zeng, Alan L Hiti, Kenneth I Weinberg, and Punam Malik.
    • Division of Hematology-Oncology, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA.
    • Exp. Hematol. 2004 May 1;32(5):483-93.

    ObjectiveSickle cell disease (SCD) is remarkable for stress erythropoiesis. We investigated the progenitor populations contributing to erythroid stress.Materials And MethodsWe characterized hematopoietic progenitor cells in sickle bone marrow and sickle peripheral blood from patients with SCD compared to those in normal bone marrow.ResultsThere were increased proportions of sickle bone marrow and sickle peripheral blood CD34(+) cells that coexpressed glycophorin A (GlyA), normally expressed late during erythroid differentiation when CD34 is down-regulated. Remarkably, increased numbers of CD34(+)CD38(-) hematopoietic progenitor cells from sickle bone marrow (p < 0.03) and sickle peripheral blood (p < 0.004) coexpressed GlyA, compared to normal bone marrow CD34(+)CD38(-) hematopoietic progenitor cells. At a molecular level, even the sickle bone marrow and sickle peripheral blood CD34(+)CD38(-) hematopoietic progenitor cells not expressing GlyA by fluorescence-activated cell sorting or reverse transcriptase-polymerase chain reaction expressed the erythroid-specific gene GATA-1, unlike normal bone marrow, suggesting desynchronized erythroid gene expression in the SCD hematopoietic progenitor cells. We also generated red blood cells in vitro from GlyA(+) and GlyA(-)CD34(+) cells. GlyA(+)CD34(+) produced more F cells (p < 0.02) and had lower clonogenicity (p < 0.01) and erythroid expansion potential. Increased F cells were generated only from sickle CD34(+) hematopoietic progenitor cells (p < 0.04), as occurs in vivo.ConclusionStress erythropoiesis in SCD has been postulated to accelerate erythropoiesis and production of F cells. Thus, CD34(+)CD38(-) expressing GlyA may represent the "stress progenitor" population. This is the first study characterizing CD34(+) and CD34(+)CD38(-) hematopoietic progenitor cells in sickle bone marrow, comparing them to sickle peripheral blood and normal bone marrow and using them to generate sickle red blood cells that recapitulate F cell production observed in vivo. We identified a unique population of GlyA(+)CD34(+) cells in SCD, which is in an accelerated erythroid differentiation pathway, has not down-regulated CD34 antigen expression, and predominantly generates F cells.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…