• J Gen Intern Med · Jul 2022

    Development and Validation of a Machine Learning Model for Automated Assessment of Resident Clinical Reasoning Documentation.

    • Verity Schaye, Benedict Guzman, Jesse Burk-Rafel, Marina Marin, Ilan Reinstein, David Kudlowitz, Louis Miller, Jonathan Chun, and Yindalon Aphinyanaphongs.
    • NYU Grossman School of Medicine, New York, NY, USA. verity.schaye@nyulangone.org.
    • J Gen Intern Med. 2022 Jul 1; 37 (9): 223022382230-2238.

    BackgroundResidents receive infrequent feedback on their clinical reasoning (CR) documentation. While machine learning (ML) and natural language processing (NLP) have been used to assess CR documentation in standardized cases, no studies have described similar use in the clinical environment.ObjectiveThe authors developed and validated using Kane's framework a ML model for automated assessment of CR documentation quality in residents' admission notes.Design, Participants, Main MeasuresInternal medicine residents' and subspecialty fellows' admission notes at one medical center from July 2014 to March 2020 were extracted from the electronic health record. Using a validated CR documentation rubric, the authors rated 414 notes for the ML development dataset. Notes were truncated to isolate the relevant portion; an NLP software (cTAKES) extracted disease/disorder named entities and human review generated CR terms. The final model had three input variables and classified notes as demonstrating low- or high-quality CR documentation. The ML model was applied to a retrospective dataset (9591 notes) for human validation and data analysis. Reliability between human and ML ratings was assessed on 205 of these notes with Cohen's kappa. CR documentation quality by post-graduate year (PGY) was evaluated by the Mantel-Haenszel test of trend.Key ResultsThe top-performing logistic regression model had an area under the receiver operating characteristic curve of 0.88, a positive predictive value of 0.68, and an accuracy of 0.79. Cohen's kappa was 0.67. Of the 9591 notes, 31.1% demonstrated high-quality CR documentation; quality increased from 27.0% (PGY1) to 31.0% (PGY2) to 39.0% (PGY3) (p < .001 for trend). Validity evidence was collected in each domain of Kane's framework (scoring, generalization, extrapolation, and implications).ConclusionsThe authors developed and validated a high-performing ML model that classifies CR documentation quality in resident admission notes in the clinical environment-a novel application of ML and NLP with many potential use cases.© 2022. The Author(s), under exclusive licence to Society of General Internal Medicine.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…