-
Anesthesia and analgesia · Jul 2022
Spinal Cord Stimulation Alleviates Neuropathic Pain by Attenuating Microglial Activation via Reducing Colony-Stimulating Factor 1 Levels in the Spinal Cord in a Rat Model of Chronic Constriction Injury.
- Cong Sun, Xueshu Tao, Chengfu Wan, Xiaojiao Zhang, Mengnan Zhao, Miao Xu, Pinying Wang, Yan Liu, Chenglong Wang, Qi Xi, and Tao Song.
- From the Department of Pain Medicine, First Affiliated Hospital, China Medical University, Shenyang, China.
- Anesth. Analg. 2022 Jul 1; 135 (1): 178190178-190.
BackgroundSpinal cord stimulation (SCS) is an emerging, minimally invasive procedure used to treat patients with intractable chronic pain conditions. Although several signaling pathways have been proposed to account for SCS-mediated pain relief, the precise mechanisms remain poorly understood. Recent evidence reveals that injured sensory neuron-derived colony-stimulating factor 1 (CSF1) induces microglial activation in the spinal cord, contributing to the development of neuropathic pain (NP). Here, we tested the hypothesis that SCS relieves pain in a rat model of chronic constriction injury (CCI) by attenuating microglial activation via blocking CSF1 to the spinal cord.MethodsSprague-Dawley rats underwent sciatic nerve ligation to induce CCI and were implanted with an epidural SCS lead. SCS was delivered 6 hours per day for 5 days. Some rats received a once-daily intrathecal injection of CSF1 for 3 days during SCS.ResultsCompared with naive rats, CCI rats had a marked decrease in the mechanical withdrawal threshold of the paw, along with increased microglial activation and augmented CSF1 levels in the spinal dorsal horn and dorsal root ganglion, as measured by immunofluorescence or Western blotting. SCS significantly increased the mechanical withdrawal threshold and attenuated microglial activation in the spinal dorsal horn in CCI rats, which were associated with reductions in CSF1 levels in the spinal dorsal horn and dorsal roots but not dorsal root ganglion. Moreover, intrathecal injection of CSF1 completely abolished SCS-induced changes in the mechanical withdrawal threshold and activation of microglia in the spinal dorsal horn in CCI rats.ConclusionsSCS reduces microglial activation in the spinal cord and alleviates chronic NP, at least in part by inhibiting the release of CSF1 from the dorsal root ganglion ipsilateral to nerve injury.Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Anesthesia Research Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.