-
J Clin Monit Comput · Feb 2023
Quantification of respiratory sounds by a continuous monitoring system can be used to predict complications after extubation: a pilot study.
- Kazuya Kikutani, Shinichiro Ohshimo, Takuma Sadamori, Shingo Ohki, Hiroshi Giga, Junki Ishii, Hiromi Miyoshi, Kohei Ota, Mitsuaki Nishikimi, and Nobuaki Shime.
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- J Clin Monit Comput. 2023 Feb 1; 37 (1): 237248237-248.
AbstractTo show that quantification of abnormal respiratory sounds by our developed device is useful for predicting respiratory failure and airway problems after extubation. A respiratory sound monitoring system was used to collect respiratory sounds in patients undergoing extubation. The recorded respiratory sounds were subsequently analyzed. We defined the composite poor outcome as requiring any of following medical interventions within 48 h as defined below. This composite outcome includes reintubation, surgical airway management, insertion of airway devices, unscheduled use of noninvasive ventilation or high-flow nasal cannula, unscheduled use of inhaled medications, suctioning of sputum by bronchoscopy and unscheduled imaging studies. The quantitative values (QV) for each abnormal respiratory sound and inspiratory sound volume were compared between composite outcome groups and non-outcome groups. Fifty-seven patients were included in this study. The composite outcome occurred in 18 patients. For neck sounds, the QVs of stridor and rhonchi were significantly higher in the outcome group vs the non-outcome group. For anterior thoracic sounds, the QVs of wheezes, rhonchi, and coarse crackles were significantly higher in the outcome group vs the non-outcome group. For bilateral lateral thoracic sounds, the QV of fine crackles was significantly higher in the outcome group vs the non-outcome group. Cervical inspiratory sounds volume (average of five breaths) immediately after extubation was significantly louder in the outcome group vs non-outcome group (63.3 dB vs 54.3 dB, respectively; p < 0.001). Quantification of abnormal respiratory sounds and respiratory volume may predict respiratory failure and airway problems after extubation.© 2022. The Author(s), under exclusive licence to Springer Nature B.V.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.