• Medicina · Jun 2022

    Validation Study on Automated Sleep Stage Scoring Using a Deep Learning Algorithm.

    • Jae Hoon Cho, Ji Ho Choi, Ji Eun Moon, Young Jun Lee, Ho Dong Lee, and Tae Kyoung Ha.
    • Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University School of Medicine, 120-1, Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea.
    • Medicina (Kaunas). 2022 Jun 9; 58 (6).

    AbstractBackground and Objectives: Polysomnography is manually scored by sleep experts. However, manual scoring is a time-consuming and labor-intensive task. The goal of this study was to verify the accuracy of automated sleep-stage scoring based on a deep learning algorithm compared to manual sleep-stage scoring. Materials and Methods: A total of 602 polysomnography datasets from subjects (Male:Female = 397:205) aged 19 to 65 years (mean age, 43.8, standard deviation = 12.2) were included in the study. The performance of the proposed model was evaluated based on kappa value and bootstrapped point-estimate of median percent agreement with a 95% bootstrap confidence interval and R = 1000. The proposed model was trained using 482 datasets and validated using 48 datasets. For testing, 72 datasets were selected randomly. Results: The proposed model exhibited good concordance rates with manual scoring for stages W (94%), N1 (83.9%), N2 (89%), N3 (92%), and R (93%). The average kappa value was 0.84. For the bootstrap method, high overall agreement between the automated deep learning algorithm and manual scoring was observed in stages W (98%), N1 (94%), N2 (92%), N3 (99%), and R (98%) and total (96%). Conclusions: Automated sleep-stage scoring using the proposed model may be a reliable method for sleep-stage classification.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.