-
- Bryce N Balmain, Andrew R Tomlinson, James P MacNamara, Linda S Hynan, Benjamin D Levine, Satyam Sarma, and Tony G Babb.
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX.
- Chest. 2022 Dec 1; 162 (6): 134913591349-1359.
BackgroundPatients with heart failure with preserved ejection fraction (HFpEF) exhibit many cardiopulmonary abnormalities that could result in V˙/Q˙ mismatch, manifesting as an increase in alveolar dead space (VDalveolar) during exercise. Therefore, we tested the hypothesis that VDalveolar would increase during exercise to a greater extent in patients with HFpEF compared with control participants.Research QuestionDo patients with HFpEF develop VDalveolar during exercise?Study Design And MethodsTwenty-three patients with HFpEF and 12 control participants were studied. Gas exchange (ventilation [V˙E], oxygen uptake [V˙o2], and CO2 elimination [V˙co2]) and arterial blood gases were analyzed at rest, twenty watts (20W), and peak exercise. Ventilatory efficiency (evaluated as the V˙E/V˙co2 slope) also was measured from rest to 20W in patients with HFpEF. The physiologic dead space (VDphysiologic) to tidal volume (VT) ratio (VD/VT) was calculated using the Enghoff modification of the Bohr equation. VDalveolar was calculated as: (VD / VT × VT) - anatomic dead space. Data were analyzed between groups (patients with HFpEF vs control participants) across conditions (rest, 20W, and peak exercise) using a two-way repeated measures analysis of variance and relationships were analyzed using Pearson correlation coefficient.ResultsVDalveolar increased from rest (0.12 ± 0.07 L/breath) to 20W (0.22 ± 0.08 L/breath) in patients with HFpEF (P < .01), whereas VDalveolar did not change from rest (0.01 ± 0.06 L/breath) to 20W (0.06 ± 0.13 L/breath) in control participants (P = .19). Thereafter, VDalveolar increased from 20W to peak exercise in patients with HFpEF (0.37 ± 0.16 L/breath; P < .01 vs 20W) and control participants (0.19 ± 0.17 L/breath; P = .03 vs 20W). VDalveolar was greater in patients with HFpEF compared with control participants at rest, 20W, and peak exercise (main effect for group, P < .01). Moreover, the increase in VDalveolar correlated with the V˙E/V˙co2 slope (r = 0.69; P < .01), which was correlated with peak V˙o2peak (r = 0.46; P < .01) in patients with HFpEF.InterpretationThese data suggest that the increase in V˙/Q˙ mismatch may be explained by increases in VDalveolar and that increases in VDalveolar worsens ventilatory efficiency, which seems to be a key contributor to exercise intolerance in patients with HFpEF.Copyright © 2022 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.