-
- Katherine A Koh, Ann Elizabeth Montgomery, Robert W O'Brien, Chris J Kennedy, Alex Luedtke, Nancy A Sampson, Sarah M Gildea, Irving Hwang, Andrew J King, Aldis H Petriceks, Maria V Petukhova, Murray B Stein, Robert J Ursano, and Ronald C Kessler.
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Boston Health Care for the Homeless Program, Boston, Massachusetts. Electronic address: kkoh@partners.org.
- Am J Prev Med. 2022 Jul 1; 63 (1): 132313-23.
IntroductionThe ability to predict and prevent homelessness has been an elusive goal. The purpose of this study was to develop a prediction model that identified U.S. Army soldiers at high risk of becoming homeless after transitioning to civilian life based on information available before the time of this transition.MethodsThe prospective cohort study consisted of observations from 16,589 soldiers who were separated or deactivated from service and who had previously participated in 1 of 3 baseline surveys of the Army Study to Assess Risk and Resilience in Servicemembers in 2011-2014. A machine learning model was developed in a 70% training sample and evaluated in the remaining 30% test sample to predict self-reported homelessness in 1 of 2 Longitudinal Study surveys administered in 2016-2018 and 2018-2019. Predictors included survey, administrative, and geospatial variables available before separation/deactivation. Analysis was conducted in November 2020-May 2021.ResultsThe 12-month prevalence of homelessness was 2.9% (SE=0.2%) in the total Longitudinal Study sample. The area under the receiver operating characteristic curve in the test sample was 0.78 (SE=0.02) for homelessness. The 4 highest ventiles (top 20%) of predicted risk included 61% of respondents with homelessness. Self-reported lifetime histories of depression, trauma of having a loved one murdered, and post-traumatic stress disorder were the 3 strongest predictors of homelessness.ConclusionsA prediction model for homelessness can accurately target soldiers for preventive intervention before transition to civilian life.Copyright © 2022 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.