• Am. J. Respir. Crit. Care Med. · Oct 2022

    Impairment of the NKT-STAT1-CXCL9-axis Contributes to Vessel Fibrosis in Pulmonary Hypertension Due to Lung Fibrosis.

    • Katharina Jandl, Leigh M Marsh, Ayse Ceren Mutgan, Slaven Crnkovic, Francesco Valzano, Diana Zabini, Julia Hoffmann, Vasile Foris, Elisabeth Gschwandtner, Walter Klepetko, Helmut Prosch, Holger Flick, Luka Brcic, Izidor Kern, Akos Heinemann, Horst Olschewski, Gabor Kovacs, and Grazyna Kwapiszewska.
    • Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.
    • Am. J. Respir. Crit. Care Med. 2022 Oct 15; 206 (8): 981998981-998.

    AbstractRationale: Pulmonary hypertension (PH) is a common, severe comorbidity in interstitial lung diseases such as pulmonary fibrosis (PF), and it has limited treatment options. Excessive vascular fibrosis and inflammation are often present in PH, but the underlying mechanisms are still not well understood. Objectives: To identify a novel functional link between natural killer T (NKT) cell activation and vascular fibrosis in PF-PH. Methods: Multicolor flow cytometry, secretome, and immunohistological analyses were complemented by pharmacological NKT cell activation in vivo, in vitro, and ex vivo. Measurements and Main Results: In pulmonary vessels of patients with PF-PH, increased collagen deposition was linked to a local NKT cell deficiency and decreased IL-15 concentrations. In a mouse model of PH caused by lung fibrosis, pharmacological NKT cell activation using a synthetic α-galactosylceramide analog (KRN7000) restored local NKT cell numbers and ameliorated vascular remodeling and right ventricular systolic pressure. Supplementation with activated NKT cells reduced collagen deposition in isolated human pulmonary arterial smooth muscle cells (hPASMCs) and in ex vivo precision-cut lung slices of patients with end-stage PF-PH. Coculture with activated NKT cells induced STAT1 signaling in hPASMCs. Secretome analysis of peripheral blood mononuclear cells identified CXCL9 and CXCL10 as indicators of NKT cell activation. Pharmacologically, CXCL9, but not CXCL10, potently inhibited collagen deposition in hPASMCs via the chemokine receptor CXCR3. Conclusions: Our results indicate that the absence of NKT cells impairs the STAT1-CXCL9-CXCR3 axis in PF-PH and that restoration of this axis by NKT cell activation may unravel a novel therapeutic strategy to target vascular fibrosis in interstitial lung disease.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…