• Medicine · Jul 2022

    Prediction and validation of potential molecular targets for the combination of Astragalus membranaceus and Angelica sinensis in the treatment of atherosclerosis based on network pharmacology.

    • Tianyue Wang, Yaqiong Zhou, Kaina Wang, Xinyu Jiang, Jingbo Wang, and Jing Chen.
    • The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
    • Medicine (Baltimore). 2022 Jul 1; 101 (26): e29762e29762.

    AbstractSince the 20th century, mortality rate due to cardiovascular diseases has increased, posing a substantial economic burden on society. Atherosclerosis is a common cardiovascular disease that requires urgent and careful attention. This study was conducted to predict and validate the potential molecular targets and pathways of Astragalus membranaceus and Angelica sinensis (A&A) in the treatment of atherosclerosis using network pharmacology. The active ingredients of A&A were obtained using the TCMSP database, while the target genes of atherosclerosis were acquired using 2 databases, namely GeneCards and DrugBank. The disease-target-component model map and the core network were obtained using Cytoscape 3.8.2 and MCODE plug-in, respectively. The core network was then imported into the STRING database to obtain the protein-protein interaction (PPI) network diagram. Moreover, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were performed using the HIPLOT online website. Finally, the small molecules related to key signaling pathways were molecularly docked and visualized. Under the screening conditions of oral bioavailability ≥ 30% and drug-likeness ≥ 0.18, 22 active ingredients were identified from A&A, and 174 relevant targets were obtained. Additionally, 54 active ingredients were found in the extracted core network. Interleukin (IL)-17 signaling pathway, tumor necrosis factor (TNF) signaling pathway, and Toll-like receptor (TLR) signaling pathway were selected as the main subjects through KEGG enrichment analysis. Core targets (RELA, IKBKB, CHUK, and MMP3) and active ingredients (kaempferol, quercetin, and isorhamnetin) were selected and validated using molecular docking. This study identified multiple molecular targets and pathways for A&A in the treatment of atherosclerosis. A&A has the potential to treat atherosclerosis through an antiinflammatory approach.Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…