-
Randomized Controlled Trial
Machine Learning-Based Prognostic Model for the Prediction of Early Death after Traumatic Brain Injury: Comparison with the Corticosteroid Randomization after Significant Head Injury (CRASH) Model.
- Sang Hyub Lee, Chul Hee Lee, Soo Hyun Hwang, and Dong Ho Kang.
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- World Neurosurg. 2022 Oct 1; 166: e125e134e125-e134.
BackgroundMachine learning (ML) has been used to predict the outcomes of traumatic brain injury. However, few studies have reported the use of ML models to predict early death. This study aimed to develop ML models for early death prediction and to compare performance with the corticosteroid randomization after significant head injury (CRASH) model.MethodsWe retrospectively reviewed traumatic brain injury patients between February 2017 and August 2021. The patients were randomly assigned to a training set and a test set. Predictive variables included clinical findings, laboratory values, and computed tomography findings. The ML models (random forest, support vector machine [SVM], logistic regression) were developed with the training set. The CRASH model is a prognostic model that was developed based on 10,008 patients included in the CRASH trial. The ML and CRASH models were applied to the test set to evaluate the performance.ResultsA total of 423 patients were included; 317 and 106 patients were randomly assigned to the training and test sets, respectively. The area under the curve was highest in the SVM (0.952, 95% confidence interval = 0.906-0.990) and lowest in the CRASH model (0.942, 95% confidence interval = 0.886-0.999). There were no significant differences between the area under the curves of the ML and CRASH models (P = 0.899 for random forest vs. the CRASH model, P = 0.760 for SVM vs. the CRASH model, P = 0.806 for logistic regression vs. the CRASH model).ConclusionsThe ML models may have comparable performances compared to the CRASH model despite being developed with a smaller sample size.Copyright © 2022 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.