• Cochrane Db Syst Rev · Jul 2022

    Review

    Local intramuscular transplantation of autologous bone marrow mononuclear cells for critical lower limb ischaemia.

    • Bobak Moazzami, Zinat Mohammadpour, Zohyra E Zabala, Ermia Farokhi, Aria Roohi, Elena Dolmatova, and Kasra Moazzami.
    • Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
    • Cochrane Db Syst Rev. 2022 Jul 8; 7 (7): CD008347CD008347.

    BackgroundPeripheral arterial disease is a major health problem, and in about 1% to 2% of patients, the disease progresses to critical limb ischaemia (CLI), also known as critical limb-threatening ischaemia. In a substantial number of individuals with CLI, no effective treatment options other than amputation are available, with around a quarter of these patients requiring a major amputation during the following year. This is the second update of a review first published in 2011.ObjectivesTo evaluate the benefits and harms of local intramuscular transplantation of autologous adult bone marrow mononuclear cells (BMMNCs) as a treatment for CLI.Search MethodsWe used standard, extensive Cochrane search methods. The latest search date was 8 November 2021.Selection CriteriaWe included all randomised controlled trials (RCTs) of CLI in which participants were randomly allocated to intramuscular administration of autologous adult BMMNCs or control (either no intervention, conventional conservative therapy, or placebo).Data Collection And AnalysisWe used standard Cochrane methods. Our primary outcomes of interest were all-cause mortality, pain, and amputation. Our secondary outcomes were angiographic analysis, ankle-brachial index (ABI), pain-free walking distance, side effects and complications. We assessed the certainty of the evidence using the GRADE approach.Main ResultsWe included four RCTs involving a total of 176 participants with a clinical diagnosis of CLI. Participants were randomised to receive either intramuscular cell implantation of BMMNCs or control. The control arms varied between studies, and included conventional therapy, diluted autologous peripheral blood, and saline. There was no clear evidence of an effect on mortality related to the administration of BMMNCs compared to control (risk ratio (RR) 1.00, 95% confidence interval (CI) 0.15 to 6.63; 3 studies, 123 participants; very low-certainty evidence). All trials assessed changes in pain severity, but the trials used different forms of pain assessment tools, so we were unable to pool data. Three studies individually reported that no differences in pain reduction were observed between the BMMNC and control groups. One study reported that reduction in rest pain was greater in the BMMNC group compared to the control group (very low-certainty evidence). All four trials reported the rate of amputation at the end of the study period. We are uncertain if amputations were reduced in the BMMNC group compared to the control group, as a possible small effect (RR 0.52, 95% CI 0.27 to 0.99; 4 studies, 176 participants; very low-certainty evidence) was lost after undertaking sensitivity analysis (RR 0.52, 95% CI 0.19 to 1.39; 2 studies, 89 participants). None of the included studies reported any angiographic analysis. Ankle-brachial index was reported differently by each study, so we were not able to pool the data. Three studies reported no changes between groups, and one study reported greater improvement in ABI (as haemodynamic improvement) in the BMMNC group compared to the control group (very low-certainty evidence). One study reported pain-free walking distance, finding no clear difference between BMMNC and control groups (low-certainty evidence). We pooled the data for side effects reported during the follow-up, and this did not show any clear difference between BMMNC and control groups (RR 2.13, 95% CI 0.50 to 8.97; 4 studies, 176 participants; very low-certainty evidence). We downgraded the certainty of the evidence due to the concerns about risk of bias, imprecision, and inconsistency.Authors' ConclusionsWe identified a small number of studies that met our inclusion criteria, and these differed in the controls they used and how they measured important outcomes. Limited data from these trials provide very low- to low-certainty evidence, and we are unable to draw conclusions to support the use of local intramuscular transplantation of BMMNC for improving clinical outcomes in people with CLI. Evidence from larger RCTs is needed in order to provide adequate statistical power to assess the role of this procedure.Copyright © 2022 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.