• World Neurosurg · Oct 2022

    CXCR4 disrupts blood-brain barrier and promotes brain metastasis through activation of the PI3K/AKT pathway in lung cancer.

    • Lei Zhu, Fugui Yang, Guangxue Wang, and Qinchuan Li.
    • Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
    • World Neurosurg. 2022 Oct 1; 166: e369e381e369-e381.

    BackgroundCXC motif chemokine receptor type 4 (CXCR4) is an indispensable factor in the process of lung cancer brain metastasis (LCBM). The PI3K/AKT signal pathway is crucial in affecting cell invasion and metastasis and serves as a pivotal regulator in LCBM. However, the relationship between CXCR4 and the PI3K/AKT signal pathway is unclear. This study aimed to explore the underlying mechanisms of CXCR4 and PI3K/AKT in LCBM.MethodsTwo lung cancer cells (A549 and H1299) and cells transfected with short hairpin RNA (shRNA)-CXCR4 were cocultured with normal human astrocyte cells and human brain endothelial (hCMEC/D3) cells to establish a blood-brain barrier model in vitro. The proliferation, migration, and invasion tight junction proteins (claudin-5, occludin, and ZO-1) were examined. Finally, results were verified in a nude mice model.ResultsThe abilities of cell proliferation, migration, and invasion were significantly reduced in A549 and H1299 cells transfected with shRNA-CXCR4 compared with the negative control group. The proteins phosphorylated PI3K and phosphorylated AKT were downregulated in lung cancer cells transfected with shRNA-CXCR4. The proteins claudin-5, occludin, and ZO-1 were upregulated in the A549 and H1299 cells transfected with shRNA-CXCR4. In vivo experiment results confirmed that the knockdown of CXCR4 played a protective role in the process of LCBM.ConclusionsOur findings revealed that CXCR4 promotes LCBM by regulating the PI3K/Akt signal pathway. We also demonstrated that inhibiting CXCR4 could lead to prevention of LCBM. This study provides further rationale for clinical therapy that targets CXCR4/PI3K/AKT.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.