• Intern Emerg Med · Aug 2022

    Review

    Ergogenic value of oxygen supplementation in chronic obstructive pulmonary disease.

    • Dimitrios Megaritis, Peter D Wagner, and Ioannis Vogiatzis.
    • Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Tyne and Wear, Newcastle upon Tyne, UK. dimitrios.megaritis@northumbria.ac.uk.
    • Intern Emerg Med. 2022 Aug 1; 17 (5): 1277-1286.

    AbstractPatients with COPD exhibit limited exercise endurance time compared to healthy age-matched individuals. Oxygen supplementation is often applied to improve endurance time during pulmonary rehabilitation in patients with COPD and thus a comprehensive understanding of the mechanisms leading to improved endurance is desirable. This review analyses data from two studies by our research group investigating the effect of oxygen supplementation on cerebrovascular, systemic, respiratory and locomotor muscle oxygen availability on the same cohort of individuals with advanced COPD, and the mechanisms associated with improved endurance time in hyperoxia, which was essentially doubled (at the same power output). In hyperoxia at isotime (the time at which patients became exhausted in normoxia) exercise was associated with greater respiratory and locomotor muscle (but not frontal cortex) oxygen delivery (despite lower cardiac output), lower lactate concentration and less tachypnoea. Frontal cortex oxygen saturation was higher, and respiratory drive lower. Hence, improved endurance in hyperoxia appears to be facilitated by several factors: increased oxygen availability to the respiratory and locomotor muscles, less metabolic acidosis, and lower respiratory drive. At exhaustion in both normoxia and hyperoxia, only cardiac output and breathing pattern were not different between conditions. However, minute ventilation in hyperoxia exceeded the critical level of ventilatory constraints (VE/MVV > 75-80%). Lactate remained lower and respiratory and locomotor muscle oxygen delivery greater in hyperoxia, suggesting greater muscle oxygen availability improving muscle function. Taken together, these findings suggest that central haemodynamic and ventilatory limitations and not contracting muscle conditions dictate endurance time in COPD during exercise in hyperoxia.© 2022. The Author(s).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…