-
- Catia Cilloniz, Logan Ward, Mads Lause Mogensen, Juan M Pericàs, Raúl Méndez, Albert Gabarrús, Miquel Ferrer, Carolina Garcia-Vidal, Rosario Menendez, and Antoni Torres.
- Department of Pneumology, Hospital Clinic of Barcelona, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centers in Respiratory Diseases (CIBERES), Barcelona, Spain; Faculty of Health Sciences, Continental University, Huancayo, Peru.
- Chest. 2023 Jan 1; 163 (1): 778877-88.
BackgroundArtificial intelligence tools and techniques such as machine learning (ML) are increasingly seen as a suitable manner in which to increase the prediction capacity of currently available clinical tools, including prognostic scores. However, studies evaluating the efficacy of ML methods in enhancing the predictive capacity of existing scores for community-acquired pneumonia (CAP) are limited. We aimed to apply and validate a causal probabilistic network (CPN) model to predict mortality in patients with CAP.Research QuestionIs a CPN model able to predict mortality in patients with CAP better than the commonly used severity scores?Study Design And MethodsThis was a derivation-validation retrospective study conducted in two Spanish university hospitals. The ability of a CPN designed to predict mortality in sepsis (SepsisFinder [SeF]), and adapted for CAP (SeF-ML), to predict 30-day mortality was assessed and compared with other scoring systems (Pneumonia Severity Index [PSI], Sequential Organ Failure Assessment [SOFA], quick Sequential Organ Failure Assessment [qSOFA], and CURB-65 criteria [confusion, urea, respiratory rate, BP, age ≥ 65 years]). The SeF models are proprietary software. Differences between receiver operating characteristic curves were assessed by the DeLong method for correlated receiver operating characteristic curves.ResultsThe derivation cohort comprised 4,531 patients, and the validation cohort consisted of 1,034 patients. In the derivation cohort, the areas under the curve (AUCs) of SeF-ML, CURB-65, SOFA, PSI, and qSOFA were 0.801, 0.759, 0.671, 0.799, and 0.642, respectively, for 30-day mortality prediction. In the validation study, the AUC of SeF-ML was 0.826, concordant with the AUC (0.801) in the derivation data (P = .51). The AUC of SeF-ML was significantly higher than those of CURB-65 (0.764; P = .03) and qSOFA (0.729, P = .005). However, it did not differ significantly from those of PSI (0.830; P = .92) and SOFA (0.771; P = .14).InterpretationSeF-ML shows potential for improving mortality prediction among patients with CAP, using structured health data. Additional external validation studies should be conducted to support generalizability.Copyright © 2022 American College of Chest Physicians. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.