• J. Investig. Med. · Jul 2022

    eXtreme Gradient Boosting-based method to classify patients with COVID-19.

    • Antonio Ramón, Ana Maria Torres, Javier Milara, Joaquín Cascón, Pilar Blasco, and Jorge Mateo.
    • Pharmacy Department, General University Hospital Consortium of Valencia, Valencia, Spain.
    • J. Investig. Med. 2022 Jul 18.

    AbstractDifferent demographic, clinical and laboratory variables have been related to the severity and mortality following SARS-CoV-2 infection. Most studies applied traditional statistical methods and in some cases combined with a machine learning (ML) method. This is the first study to date to comparatively analyze five ML methods to select the one that most closely predicts mortality in patients admitted with COVID-19. The aim of this single-center observational study is to classify, based on different types of variables, adult patients with COVID-19 at increased risk of mortality. SARS-CoV-2 infection was defined by a positive reverse transcriptase PCR. A total of 203 patients were admitted between March 15 and June 15, 2020 to a tertiary hospital. Data were extracted from the electronic medical record. Four supervised ML algorithms (k-nearest neighbors (KNN), decision tree (DT), Gaussian naïve Bayes (GNB) and support vector machine (SVM)) were compared with the eXtreme Gradient Boosting (XGB) method proposed to have excellent scalability and high running speed, among other qualities. The results indicate that the XGB method has the best prediction accuracy (92%), high precision (>0.92) and high recall (>0.92). The KNN, SVM and DT approaches present moderate prediction accuracy (>80%), moderate recall (>0.80) and moderate precision (>0.80). The GNB algorithm shows relatively low classification performance. The variables with the greatest weight in predicting mortality were C reactive protein, procalcitonin, glutamyl oxaloacetic transaminase, glutamyl pyruvic transaminase, neutrophils, D-dimer, creatinine, lactic acid, ferritin, days of non-invasive ventilation, septic shock and age. Based on these results, XGB is a solid candidate for correct classification of patients with COVID-19.© American Federation for Medical Research 2022. No commercial re-use. See rights and permissions. Published by BMJ.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…