-
- Harpreet Singh, Rohan Lohia, Leyanna Susan George, Nivedita Gupta, Jeromie Winsley Thangaraj, Salaj Rana, Shweta Rana, Jasmine Kaur, Shashwat Shivam, Narendra Kumar Arora, Jai Prakash Muliyil, Manoj V Murhekar, Rakesh Lodha, R M Pandey, Vishnu Vardhan Rao, Suhas Dhandore, Akash Malik, Vijay Kumar, Ankit Tripathi, Samiran Panda, and Balram Bhargava.
- Division of Bio-Medical Informatics, Indian Council of Medical Research, New Delhi, India.
- Indian J Med Res. 2022 May 1; 155 (5&6): 513517513-517.
AbstractCOVID-19 was declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Since then, efforts were initiated to develop safe and effective vaccines. Till date, 11 vaccines have been included in the WHO's emergency use list. The emergence and spread of variant strains of SARS-CoV-2 has altered the disease transmission dynamics, thus creating a need for continuously monitoring the real-world effectiveness of various vaccines and assessing their overall impact on disease control. To achieve this goal, the Indian Council of Medical Research (ICMR) along with the Ministry of Health and Family Welfare, Government of India, took the lead to develop the India COVID-19 Vaccination Tracker by synergizing three different public health databases: National COVID-19 testing database, CoWIN vaccination database and the COVID-19 India portal. A Vaccine Data Analytics Committee (VDAC) was constituted to advise on various modalities of the proposed tracker. The VDAC reviewed the data related to COVID-19 testing, vaccination and patient outcomes available in the three databases and selected relevant data points for inclusion in the tracker, following which databases were integrated, using common identifiers, wherever feasible. Multiple data filters were applied to retrieve information of all individuals ≥18 yr who died after the acquisition of COVID-19 infection with or without vaccination, irrespective of the time between vaccination and test positivity. Vaccine effectiveness (VE) against the reduction of mortality and hospitalizations was initially assessed. As compared to the hospitalization data, mortality reporting was found to be much better in terms of correctness and completeness. Therefore, hospitalization data were not considered for analysis and presentation in the vaccine tracker. The vaccine tracker thus depicts VE against mortality, calculated by a cohort approach using person-time analysis. Incidence of COVID-19 deaths among one- and two-dose vaccine recipients was compared with that among unvaccinated groups, to estimate the rate ratios (RRs). VE was estimated as 96.6 and 97.5 per cent, with one and two doses of the vaccines, respectively, during the period of reporting. The India COVID-19 Vaccination Tracker was officially launched on September 9, 2021. The high VE against mortality, as demonstrated by the tracker, has helped aid in allaying vaccine hesitancy, augmenting and maintaining the momentum of India's COVID-19 vaccination drive.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.