• IEEE Trans Biomed Eng · Dec 2007

    Impedance-based ventilation detection during cardiopulmonary resuscitation.

    • Martin Risdal, Sven Ole Aase, Mette Stavland, and Trygve Eftestøl.
    • Department of Electrical and Computer Engineering, University of Stavanger, Stavanger 4036, Norway. martin.risdal@roxar.com
    • IEEE Trans Biomed Eng. 2007 Dec 1;54(12):2237-45.

    AbstractIt has been suggested to develop automated external defibrillators with the ability to monitor cardiopulmonary resuscitation (CPR) performance online and give corrective feedback in order to improve the resuscitation quality. Thoracic impedance changes are closely correlated to lung volume changes and can be used to monitor the ventilatory activity. We developed a pattern-recognition-based detection system that uses thoracic impedance to accurately detect ventilation during ongoing CPR. The detection system was developed and evaluated on recordings of real-world resuscitation efforts of cardiac arrest patients where ventilations were manually annotated by human experts. The annotated ventilations were detected with an overall positive predictive value of 95.5% for a sensitivity of 90.4%. During chest compressions, the detection system achieved a mean positive predictive value of 94.8% for a sensitivity of 88.7%. The results suggest that accurate ventilation detection during CPR based on the proposed approach is feasible, and that the performance is not significantly degraded in the presence of chest compressions.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…